Spelling suggestions: "subject:"tetrahydropyridine"" "subject:"tetrahydropyridines""
1 |
Synthesis and mechanistic studies on the monoamine oxidase (MAO) catalyzed oxidation of 1,4-disubstituted-1,2,3,6-tetrahydropyridinesYu, Jian 28 August 1998 (has links)
The parkinsonian inducing drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is bioactivated in a reaction catalyzed by the flavoenzyme monoamine oxidase B (MAO-B) to form the corresponding dihydropyridinium (MPDP+) subsequently pyridinium (MPP+) metabolites.
As part of our ongoing studies to characterize the structural features responsible for this unexpected biotransformation, we have synthesized and examined the MAO-B substrate properties of a variety of MPTP analogs bearing various heteroaryl groups at the 4-position of the tetrahydropyridinyl ring. The results of these SAR studies indicate that electronic features, steric features and polar interactions can contribute to the substrate activities.
Additionally, isotope effects have been examined to investigate the mechanism and stereoselectivity of the MAO-B catalytic pathway. The synthesis and characterization of regio and stereoselectively deuterated MPTP analogs have been achieved. The results indicate that the catalytic step occurs exclusively at the allylic C-6 position and is rate-determining for both good and poor substrates. The two enantiomers of MPTP bearing a deuterium atom at C-6 have been prepared via chiral aminooxazolinyl derivatives and have been characterized by 2H NMR in a chiral liquid crystal matrix. These enantiomers were used to determine the selectivity of the MAO-B catalyzed a C-H bond cleavage reaction leading to the dihydropyridinium metabolite MPDP+.
Some of the cyclopropyl analogs of MPTP have also been synthesized as the potential inhibitors. / Ph. D.
|
2 |
The effect of MPTP treatment on the catecholamine content of the adrenal medulla in unilaterally adrenalectomized miceCook, Jennifer A. January 1993 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
|
3 |
Enantiopure 3-substituted piperidines via an aziridinium ion ring expansionJarvis, Scott 03 1900 (has links)
Ce mémoire décrit le développement d’une nouvelle méthodologie d’expansion de cycle
irréversible à partir de N-alkyl-3,4-déhydroprolinols pour former des N-alkyl
tétrahydropyridines 3-substituées en passant par un intermédiaire aziridinium bicyclique.
Cette méthode permet l’introduction d’un vaste éventail de substituants à la position 3 et tolère bien la présence de groupements aux positions 2 et 6, donnant accès à des
pipéridines mono-, di- ou trisubstituées avec un excellent diastéréocontrôle. De plus, il est démontré que l’information stéréogénique du 3,4-déhydroprolinol de départ est totalement transférée vers le produit tétrahydropyridine. Additionnellement, une méthodologie fut
dévelopée pour la préparation des produits de départ 3,4-déhydroprolinols en forme
énantiopure, avec ou sans substituants aux positions 2 et 5, avec un très bon stéréocontrôle.
Le premier chapitre présente un résumé de la littérature sur le sujet, incluant un bref survol
des méthodes existantes pour la synthèse de pipéridines 3-substituées, ainsi qu’une vue
d’ensemble de la chimie des aziridiniums. L’hypothèse originale ainsi que le raisonnement
pour l’entreprise de ce projet y sont également inclus.
Le second chapitre traite de la synthèse des N-alkyl-3,4-déhydroprolinols utilisés comme
produits de départ pour l’expansion de cycle vers les tétrahydropyridines 3-substituées,
incluant deux routes synthétiques différentes pour leur formation. Le premier chemin
synthétique utilise la L-trans-4-hydroxyproline comme produit de départ, tandis que le
deuxième est basé sur une modification de la réaction de Petasis-Mannich suivie par une
métathèse de fermeture de cycle, facilitant l’accès aux précurseurs pour l’expansion de
cycle.
Le troisième chapitre présente une preuve de concept de la viabilité du projet ainsi que
l’optimisation des conditions réactionnelles pour l’expansion de cycle. De plus, il y est
démontré que l’information stéréogénique des produits de départs est transférée vers les
produits.
iv
Au quatrième chapitre, l’étendue des composés pouvant être synthétisés par cette
méthodologie est présentée, ainsi qu’une hypothèse mécanistique expliquant les
stéréochimies relatives observées. Une synthèse énantiosélective efficace et divergente de
tétrahydropyridines 2,3-disubstituées est également documentée, où les deux substituants
furent introduits à partir d’un intermédiaire commun en 3 étapes. / This thesis describes the development of a novel methodology of irreversible ring
expansion from N-alkyl-3,4-dehydroprolinols to N-alkyl-3-substituted tetrahydropyridines
through a bicyclic aziridinium ion intermediate. This method allows a wide variety of
substituents at the 3-position, and also permits substitution at the 2- and 6-positions of the
tetrahydropyridine giving mono-, di- or tri-substituted piperidines with excellent
diasterocontrol. Complete transfer of the stereogenic information of the 3,4-
dehydroprolinol to the tetrahydropyridine product is demonstrated. Also, a methodology
was developed to prepare the 3,4-dehydroprolinol starting materials in enantiopure form,
with the possibility of substitution at the 2- and 5-positions with excellent diasterocontrol.
The first chapter presents the literature background, including a brief summary of
methodologies for the synthesis of 3-substituted piperidines, and an overview of
aziridinium ion chemistry. Also presented is the original hypothesis of the project, and our reasoning for undertaking this project.
The second chapter describes the synthesis of N-alkyl-3,4-dehydroprolinols used as
precursors for the ring expansion to 3-substituted tetrahydropyridines, including two different synthetic routes. The first route route converts L-trans-4-hydroxyproline to enantioenriched N-benzyl-3,4-dehydroprolinol in 6 steps. The second synthetic route was developed using a variant of the Petasis-Mannich reaction and a ring closing metathesis,making the precursors more readily available and simple to synthesize.
The third chapter presents the proof of concept of the viability of the project and
optimization studies. Moreover, the transfer of stereogenic information to the resulting
product is demonstrated.
The fourth chapter demonstrates the broad scope of the ring expansion and mechanistic
insight is given based on the relative configuration of the products. An expedient divergent enantioselective synthesis of a 2,3-disubstituted tetrahydropyridine is also shown, with both substituents being chosen from a common intermediate in 3 steps.
|
4 |
Enantiopure 3-substituted piperidines via an aziridinium ion ring expansionJarvis, Scott 03 1900 (has links)
Ce mémoire décrit le développement d’une nouvelle méthodologie d’expansion de cycle
irréversible à partir de N-alkyl-3,4-déhydroprolinols pour former des N-alkyl
tétrahydropyridines 3-substituées en passant par un intermédiaire aziridinium bicyclique.
Cette méthode permet l’introduction d’un vaste éventail de substituants à la position 3 et tolère bien la présence de groupements aux positions 2 et 6, donnant accès à des
pipéridines mono-, di- ou trisubstituées avec un excellent diastéréocontrôle. De plus, il est démontré que l’information stéréogénique du 3,4-déhydroprolinol de départ est totalement transférée vers le produit tétrahydropyridine. Additionnellement, une méthodologie fut
dévelopée pour la préparation des produits de départ 3,4-déhydroprolinols en forme
énantiopure, avec ou sans substituants aux positions 2 et 5, avec un très bon stéréocontrôle.
Le premier chapitre présente un résumé de la littérature sur le sujet, incluant un bref survol
des méthodes existantes pour la synthèse de pipéridines 3-substituées, ainsi qu’une vue
d’ensemble de la chimie des aziridiniums. L’hypothèse originale ainsi que le raisonnement
pour l’entreprise de ce projet y sont également inclus.
Le second chapitre traite de la synthèse des N-alkyl-3,4-déhydroprolinols utilisés comme
produits de départ pour l’expansion de cycle vers les tétrahydropyridines 3-substituées,
incluant deux routes synthétiques différentes pour leur formation. Le premier chemin
synthétique utilise la L-trans-4-hydroxyproline comme produit de départ, tandis que le
deuxième est basé sur une modification de la réaction de Petasis-Mannich suivie par une
métathèse de fermeture de cycle, facilitant l’accès aux précurseurs pour l’expansion de
cycle.
Le troisième chapitre présente une preuve de concept de la viabilité du projet ainsi que
l’optimisation des conditions réactionnelles pour l’expansion de cycle. De plus, il y est
démontré que l’information stéréogénique des produits de départs est transférée vers les
produits.
iv
Au quatrième chapitre, l’étendue des composés pouvant être synthétisés par cette
méthodologie est présentée, ainsi qu’une hypothèse mécanistique expliquant les
stéréochimies relatives observées. Une synthèse énantiosélective efficace et divergente de
tétrahydropyridines 2,3-disubstituées est également documentée, où les deux substituants
furent introduits à partir d’un intermédiaire commun en 3 étapes. / This thesis describes the development of a novel methodology of irreversible ring
expansion from N-alkyl-3,4-dehydroprolinols to N-alkyl-3-substituted tetrahydropyridines
through a bicyclic aziridinium ion intermediate. This method allows a wide variety of
substituents at the 3-position, and also permits substitution at the 2- and 6-positions of the
tetrahydropyridine giving mono-, di- or tri-substituted piperidines with excellent
diasterocontrol. Complete transfer of the stereogenic information of the 3,4-
dehydroprolinol to the tetrahydropyridine product is demonstrated. Also, a methodology
was developed to prepare the 3,4-dehydroprolinol starting materials in enantiopure form,
with the possibility of substitution at the 2- and 5-positions with excellent diasterocontrol.
The first chapter presents the literature background, including a brief summary of
methodologies for the synthesis of 3-substituted piperidines, and an overview of
aziridinium ion chemistry. Also presented is the original hypothesis of the project, and our reasoning for undertaking this project.
The second chapter describes the synthesis of N-alkyl-3,4-dehydroprolinols used as
precursors for the ring expansion to 3-substituted tetrahydropyridines, including two different synthetic routes. The first route route converts L-trans-4-hydroxyproline to enantioenriched N-benzyl-3,4-dehydroprolinol in 6 steps. The second synthetic route was developed using a variant of the Petasis-Mannich reaction and a ring closing metathesis,making the precursors more readily available and simple to synthesize.
The third chapter presents the proof of concept of the viability of the project and
optimization studies. Moreover, the transfer of stereogenic information to the resulting
product is demonstrated.
The fourth chapter demonstrates the broad scope of the ring expansion and mechanistic
insight is given based on the relative configuration of the products. An expedient divergent enantioselective synthesis of a 2,3-disubstituted tetrahydropyridine is also shown, with both substituents being chosen from a common intermediate in 3 steps.
|
5 |
Biomechanical Assessment of Normal and Parkinsonian Gait in the Non-human Primate During Treadmill LocomotionThota, Anil K. 27 August 2012 (has links)
No description available.
|
6 |
A study of the neurotoxicity of MPTP and analogs in human neuroblastoma SH-SY5Y cellsSong, Xiaoou 08 August 2007 (has links)
Neuronal alterations resulting from exposure to Parkinsonian-inducing 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP) in an in vitro model SH-SYSY human neuroblastoma cells were explored using cytotoxic effects, neurochemical changes and pathological injury as endpoints. The results suggested that:
MPTP entered the SH-SYS5Y human neuroblastoma cells through a non-dopamine transport mechanism, and was metabolized to 1-methyl-4-phenyl-2,3-dihydropyridium (MPDP⁺) and 1-methyl-4-phenylpyridium (MPP⁺) by monoamine oxidase (MAO). MPP⁺, the neurotoxic analog of MPTP, was taken up into cells through a dopamine (DA) uptake mechanism.
MPTP, via its metabolite MPP⁺, inhibited NADH dehydrogenase activity. The MPTP-induced alterations of morphology included formation of blebs, attenuated neutrites, abnormal mitochondria with electron-density of matrix and disorganization of cristae, and abnormal aggregation of filamentous material of the cytoskeleton.
MPTP was neurotoxic to the dopaminergic system, inhibiting monoamine oxidase (MAO) activity, and decreasing levels of dopamine (DA) and other catecholamines. In addition, MPTP enhanced ³H-DA release from cells, and its metabolite MPP⁺ inhibited ³H-DA uptake.
MPTP was found to directly act on the cholinergic system in SH-SY5Y cells, causing dose-related decreases in the binding at muscarinic and nicotinic receptors. MPTP also inhibited acetylcholinesterase (AChE) activity and increased choline levels. The MPTP-induced increase in DA release and the decreases in catecholamines in SH-SYSY cells were blocked by pretreatment with acetylcholine receptor antagonists atropine and d-tubocurarine.
MPTP caused increases in tau proteins, and also caused an increased expression of the reverse transcriptase polymerase chain reaction (RT-PCR) product after treatment for 2 to 5 days at 10⁻³ to 10⁻⁴ M. The results, for the first time, demonstrated that MPTP affected cytoskeletal associated tau protein and altered its mRNA.
These results demonstrated that the human neuroblastoma cell line, SH-SYSY, can be used as an in vitro model for the study of the neurotoxicity of MPTP, including the mechanisms associated with exposure to this neurotoxicitant. / Ph. D.
|
7 |
In vivo and in vitro studies on the role of metallothionein in MPTP/MPP⁺-induced neurotoxicity.January 2000 (has links)
by Wai Yuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 123-157). / Abstracts in English and Chinese. / Acknowledegment --- p.iv / Abstract --- p.v / List of Abbreviations --- p.ix / Chapter CHAPTER ONE: --- INTRODUCTION / Chapter 1.1 --- Parkinson's Disease (PD) --- p.1 / Chapter 1.1.1 --- Epidemiology --- p.1 / Chapter 1.1.2 --- Neuropathology --- p.2 / Chapter 1.1.3 --- Clinical Symptoms --- p.3 / Chapter 1.1.4 --- Treatment --- p.6 / Chapter 1.2 --- Proposed Mechanisms of Neurodegeneration in PD --- p.11 / Chapter 1.2.1 --- Oxidative Stress --- p.11 / Chapter 1.2.2 --- Mitochondrial Dysfunction --- p.13 / Chapter 1.2.3 --- Genetic Factors --- p.15 / Chapter 1.2.4 --- Environmental Factors --- p.17 / Chapter 1.2.5 --- Ageing --- p.20 / Chapter 1.3 --- "1-Methy-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) as a PD Model" --- p.22 / Chapter 1.3.1 --- Discovery of MPTP --- p.22 / Chapter 1.3.2 --- The Mechanisms of MPTP-induced Neurotoxicity --- p.23 / Chapter 1.4 --- Antioxidants in the Central Nervous System --- p.26 / Chapter 1.4.1 --- Superoxide Dismutase --- p.26 / Chapter 1.4.2 --- Glutathione --- p.27 / Chapter 1.5 --- Metallothioneins (MTs) --- p.29 / Chapter 1.5.1 --- Characteristics of MTs --- p.29 / Chapter 1.5.2 --- Functions of Astrocytes --- p.31 / Chapter 1.6 --- Astrocytes --- p.34 / Chapter 1.6.1 --- Characteristics of Astrocytes --- p.34 / Chapter 1.6.2 --- Functions of Astrocytes --- p.35 / Chapter 1.6.3 --- Role of Astrocytes in Parkinson's Disease --- p.39 / Chapter 1.7 --- Aim of Project --- p.41 / Chapter CHAPTER TWO: --- MATERIALS AND METHODS / Chapter 2.1 --- In Vitro Study --- p.44 / Chapter 2.1.1 --- Astrocyte Cultures --- p.44 / Chapter 2.1.2 --- Treatment Regimen --- p.46 / Chapter 2.1.2.1 --- 1 -methyl-4-phenyl-pyridinium (MPP+) Treatment --- p.46 / Chapter 2.1.2.2 --- Induction of Metallothioneins (MTs) and Glutathione (GSH) --- p.46 / Chapter 2.1.2.2.1 --- Northern Blot Analysis --- p.47 / Chapter 2.1.2.2.2 --- Immunocytochemical Staining for MTs --- p.48 / Chapter 2.1.2.2.3 --- GSH Assay --- p.49 / Chapter 2.1.2.3 --- Iron Chelation --- p.51 / Chapter 2.1.2.4 --- Combined Pretreatment --- p.51 / Chapter 2.1.3 --- Lactate Dehydrogenase (LDH) Assay --- p.51 / Chapter 2.1.4 --- "3,(4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) Assay" --- p.53 / Chapter 2.1.5 --- Reactive Oxygen Species (ROS) Assay --- p.55 / Chapter 2.1.6 --- Protein Assay --- p.56 / Chapter 2.1.7 --- Statistics --- p.57 / Chapter 2.2 --- In Vivo Study --- p.57 / Chapter 2.2.1 --- "Administration of 1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)" --- p.57 / Chapter 2.2.2 --- Tyrosine Hydroxylase (TH) Immunocytochemical Staining --- p.58 / Chapter 2.2.3 --- DAT Receptor Binding Assay --- p.59 / Chapter 2.2.4 --- Dopamine (DA) and DA metabolites - High Performance Liquid Chromatography (HPLC) --- p.60 / Chapter 2.2.5 --- Statistics --- p.61 / Chapter CHAPTER THREE: --- RESULTS / Chapter 3.1 --- In Vitro Study --- p.62 / Chapter 3.1.1. --- Induction of Metallothioneins (MTs) in Astrocytes with Zinc Sulfate (ZnS04) --- p.62 / Chapter 3.1.1.1 --- Immunocytochemical changes --- p.62 / Chapter 3.1.1.2 --- Northern Blot Analysis --- p.62 / Chapter 3.1.1.3 --- The Effects of ZnSO4 Pretreatment on 1 -methyl-4-phenyl- pyridinium (MPP+)-treated Astrocytes --- p.63 / Chapter 3.1.1.3.1 --- Lactate Dehydrogenase (LDH) Activities --- p.63 / Chapter 3.1.1.3.2 --- "3,(4,5-dimethylthiazol-2-yl)2,5-diphenyl- tetrazolium bromide (MTT) Activities" --- p.67 / Chapter 3.1.1.3.3 --- Reactive Oxygen Species (ROS) Production --- p.71 / Chapter 3.1.2 --- The Effects of NAc Pretreatment on MPP+-treated Astrocytes --- p.75 / Chapter 3.1.2.1 --- Glutathione (GSH) levels --- p.75 / Chapter 3.1.2.2 --- LDH Activities --- p.77 / Chapter 3.1.2.3 --- MTT Activities --- p.80 / Chapter 3.1.2.4 --- ROS Production --- p.83 / Chapter 3.1.3 --- The Effects of Deferoxamine on MPP+-treated Astrocytes --- p.87 / Chapter 3.1.3.1 --- LDH Activities --- p.87 / Chapter 3.1.3.2 --- ROS Production --- p.89 / Chapter 3.1.4 --- The Effects of ZnSO4 and NAc Combined Treatment on MPP+-treated Astrocytes --- p.92 / Chapter 3.1.4.1 --- LDH Activities --- p.92 / Chapter 3.1.4.2 --- ROS Production --- p.95 / Chapter 3.2 --- "Effects of 1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on MT-I, -II Knock-out Mice" --- p.99 / Chapter 3.2.1 --- The Effects of MPTP on Substantia Nigral (SN) Cell Loss --- p.99 / Chapter 3.2.2 --- The Effects of MPTP on Striatal (ST) and SN Dopamine Transporter (DAT) Binding --- p.99 / Chapter 3.2.3 --- The Effects of MPTP on ST Dopamine (DA) Metabolites --- p.100 / Chapter CHAPTER FOUR: --- DISCUSSION AND CONCLUSION --- p.102 / REFERENCES --- p.123
|
8 |
Effect of ascorbic acid on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced toxicity in the brain of balb/c mouse. / CUHK electronic theses & dissertations collectionJanuary 2004 (has links)
by Chan Tak Yee Bonita. / "July 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 121-137). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
9 |
Dopamine Receptor Plasticity Following MPTP-Induced Nigrostriatal Lesions in the MouseWeihmuller, Frederic B., Bruno, John P., Neff, Norton H., Hadjiconstantinou, Maria 16 May 1990 (has links)
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) destroys dopamine-containing nigrostriatal neurons and increases the apparent Bmax of both D1 and D2 binding sites in the striatum. However, the changes of Bmax occur at different intervals after the lesion. Up-regulation of D2 sites becomes evident about 3 weeks after the lesion and lasts for about 3 months. In contrast, about 3 months are required for the up-regulation of D1 sites and increased binding is still evident after 5 months.
|
10 |
The development of nitro-Mannich/hydroamination cascades for the synthesis of substituted N-heterocyclesBarber, David M. January 2013 (has links)
This thesis describes the development of nitro-Mannich/hydroamination cascade reactions for the synthesis of N-heterocycles, which are important motifs found in a variety of biologically active natural products and pharmaceuticals, such as atorvastatin (Lipitor®). Chapter 2 outlines the development of an efficient synthesis of 2,5-disubstituted pyrroles using a nitro-Mannich/hydroamination cascade. Starting from easily prepared N-protected imines and nitroalkyne substrates, a compatible combination of KOtBu (10 mol%) and AuCl3 (5 mol%) was used to afford the desired pyrrole products, after an alkene isomerisation/HNO2 elimination reaction sequence. Chapter 3 describes the extension of this methodology to the diastereo- and enantioselective synthesis of 1,2,3,4-tetrahydropyridine derivatives using a nitroalkyne substrate with an extended carbon chain. The sequential addition of a bifunctional Brønsted base/H-bond donor organocatalyst and a gold complex was found to facilitate the desired cascade reaction affording substituted 1,2,3,4-tetrahydropyridine products. We then established that highly substituted pyrrolidine compounds could be prepared by replacing the nitroalkyne substrate with a nitroallene substrate (Chapter 4). The combination of KOtBu (5 mol%) and a gold catalyst derived from Au(PPh3)Cl (10 mol%) and AgSbF6 (20 mol%) was found to give an efficient diastereoselective synthesis of pyrrolidine derivatives after an additional nitro group epimerisation step. In addition, the nitro-Mannich/hydroamination cascade using nitroallene substrates was developed into an enantioselective variant using the previously employed bifunctional Brønsted base/H-bond donor organocatalyst. This afforded enantioenriched pyrrolidine derivatives.
|
Page generated in 0.0681 seconds