Spelling suggestions: "subject:"text life detection"" "subject:"next life detection""
1 |
Segmentation of heterogeneous document images : an approach based on machine learning, connected components analysis, and texture analysisBonakdar Sakhi, Omid 06 December 2012 (has links) (PDF)
Document page segmentation is one of the most crucial steps in document image analysis. It ideally aims to explain the full structure of any document page, distinguishing text zones, graphics, photographs, halftones, figures, tables, etc. Although to date, there have been made several attempts of achieving correct page segmentation results, there are still many difficulties. The leader of the project in the framework of which this PhD work has been funded (*) uses a complete processing chain in which page segmentation mistakes are manually corrected by human operators. Aside of the costs it represents, this demands tuning of a large number of parameters; moreover, some segmentation mistakes sometimes escape the vigilance of the operators. Current automated page segmentation methods are well accepted for clean printed documents; but, they often fail to separate regions in handwritten documents when the document layout structure is loosely defined or when side notes are present inside the page. Moreover, tables and advertisements bring additional challenges for region segmentation algorithms. Our method addresses these problems. The method is divided into four parts:1. Unlike most of popular page segmentation methods, we first separate text and graphics components of the page using a boosted decision tree classifier.2. The separated text and graphics components are used among other features to separate columns of text in a two-dimensional conditional random fields framework.3. A text line detection method, based on piecewise projection profiles is then applied to detect text lines with respect to text region boundaries.4. Finally, a new paragraph detection method, which is trained on the common models of paragraphs, is applied on text lines to find paragraphs based on geometric appearance of text lines and their indentations. Our contribution over existing work lies in essence in the use, or adaptation, of algorithms borrowed from machine learning literature, to solve difficult cases. Indeed, we demonstrate a number of improvements : on separating text columns when one is situated very close to the other; on preventing the contents of a cell in a table to be merged with the contents of other adjacent cells; on preventing regions inside a frame to be merged with other text regions around, especially side notes, even when the latter are written using a font similar to that the text body. Quantitative assessment, and comparison of the performances of our method with competitive algorithms using widely acknowledged metrics and evaluation methodologies, is also provided to a large extend.(*) This PhD thesis has been funded by Conseil Général de Seine-Saint-Denis, through the FUI6 project Demat-Factory, lead by Safig SA
|
2 |
Détection, localisation et typage de texte dans des images de documents hétérogènes par Réseaux de Neurones Profonds / Detection, localization and typing of text in heterogeneous document images with Deep Neural NetworksMoysset, Bastien 28 May 2018 (has links)
Lire automatiquement le texte présent dans les documents permet de rendre accessible les informations qu'ils contiennent. Pour réaliser la transcription de pages complètes, la localisation des lignes de texte est une étape cruciale. Les méthodes traditionnelles de détection de lignes, basées sur des approches de traitement d'images, peinent à généraliser à des jeux de données hétérogènes. Pour cela, nous proposons dans cette thèse une approche par réseaux de neurones profonds. Nous avons d'abord proposé une approche de segmentation mono-dimensionnelle des paragraphes de texte en lignes à l'aide d'une technique inspirée des modèles de reconnaissance, où une classification temporelle connexionniste (CTC) est utilisée pour aligner implicitement les séquences. Ensuite, nous proposons un réseau qui prédit directement les coordonnées des boîtes englobant les lignes de texte. L'ajout d'un terme de confiance à ces boîtes hypothèses permet de localiser un nombre variable d'objets. Nous proposons une prédiction locale des objets afin de partager les paramètres entre les localisations et, ainsi, de multiplier les exemples d'objets vus par chaque prédicteur de boîte lors de l'entraînement. Cela permet de compenser la taille restreinte des jeux de données utilisés. Pour récupérer les informations contextuelles permettant de prendre en compte la structure du document, nous ajoutons, entre les couches convolutionnelles, des couches récurrentes LSTM multi-dimensionnelles. Nous proposons trois stratégies de reconnaissance pleine page qui permettent de tenir compte du besoin important de précision au niveau des positions et nous montrons, sur la base hétérogène Maurdor, la performance de notre approche pour des documents multilingues pouvant être manuscrits et imprimés. Nous nous comparons favorablement à des méthodes issues de l'état de l'art. La visualisation des concepts appris par nos neurones permet de souligner la capacité des couches récurrentes à apporter l'information contextuelle. / Being able to automatically read the texts written in documents, both printed and handwritten, makes it possible to access the information they convey. In order to realize full page text transcription, the detection and localization of the text lines is a crucial step. Traditional methods tend to use image processing based approaches, but they hardly generalize to very heterogeneous datasets. In this thesis, we propose to use a deep neural network based approach. We first propose a mono-dimensional segmentation of text paragraphs into lines that uses a technique inspired by the text recognition models. The connexionist temporal classification (CTC) method is used to implicitly align the sequences. Then, we propose a neural network that directly predicts the coordinates of the boxes bounding the text lines. Adding a confidence prediction to these hypothesis boxes enables to locate a varying number of objects. We propose to predict the objects locally in order to share the network parameters between the locations and to increase the number of different objects that each single box predictor sees during training. This compensates the rather small size of the available datasets. In order to recover the contextual information that carries knowledge on the document layout, we add multi-dimensional LSTM recurrent layers between the convolutional layers of our networks. We propose three full page text recognition strategies that tackle the need of high preciseness of the text line position predictions. We show on the heterogeneous Maurdor dataset how our methods perform on documents that can be printed or handwritten, in French, English or Arabic and we favourably compare to other state of the art methods. Visualizing the concepts learned by our neurons enables to underline the ability of the recurrent layers to convey the contextual information.
|
3 |
Segmentation of heterogeneous document images : an approach based on machine learning, connected components analysis, and texture analysis / Segmentation d'images hétérogènes de documents : une approche basée sur l'apprentissage automatique de données, l'analyse en composantes connexes et l'analyse de textureBonakdar Sakhi, Omid 06 December 2012 (has links)
La segmentation de page est l'une des étapes les plus importantes de l'analyse d'images de documents. Idéalement, une méthode de segmentation doit être capable de reconstituer la structure complète de toute page de document, en distinguant les zones de textes, les parties graphiques, les photographies, les croquis, les figures, les tables, etc. En dépit de nombreuses méthodes proposées à ce jour pour produire une segmentation de page correcte, les difficultés sont toujours nombreuses. Le chef de file du projet qui a rendu possible le financement de ce travail de thèse (*) utilise une chaîne de traitement complète dans laquelle les erreurs de segmentation sont corrigées manuellement. Hormis les coûts que cela représente, le résultat est subordonné au réglage de nombreux paramètres. En outre, certaines erreurs échappent parfois à la vigilance des opérateurs humains. Les résultats des méthodes de segmentation de page sont généralement acceptables sur des documents propres et bien imprimés; mais l'échec est souvent à constater lorsqu'il s'agit de segmenter des documents manuscrits, lorsque la structure de ces derniers est vague, ou lorsqu'ils contiennent des notes de marge. En outre, les tables et les publicités présentent autant de défis supplémentaires à relever pour les algorithmes de segmentation. Notre méthode traite ces problèmes. La méthode est divisée en quatre parties : - A contrario de ce qui est fait dans la plupart des méthodes de segmentation de page classiques, nous commençons par séparer les parties textuelles et graphiques de la page en utilisant un arbre de décision boosté. - Les parties textuelles et graphiques sont utilisées, avec d'autres fonctions caractéristiques, par un champ conditionnel aléatoire bidimensionnel pour séparer les colonnes de texte. - Une méthode de détection de lignes, basée sur les profils partiels de projection, est alors lancée pour détecter les lignes de texte par rapport aux frontières des zones de texte. - Enfin, une nouvelle méthode de détection de paragraphes, entraînée sur les modèles de paragraphes les plus courants, est appliquée sur les lignes de texte pour extraire les paragraphes, en s'appuyant sur l'apparence géométrique des lignes de texte et leur indentation. Notre contribution sur l'existant réside essentiellement dans l'utilisation, ou l'adaptation, d'algorithmes empruntés aux méthodes d'apprentissage automatique de données, pour résoudre les cas les plus difficiles. Nous démontrons en effet un certain nombre d'améliorations : sur la séparation des colonnes de texte lorsqu'elles sont proches l'une de l'autre~; sur le risque de fusion d'au moins deux cellules adjacentes d'une même table~; sur le risque qu'une région encadrée fusionne avec d'autres régions textuelles, en particulier les notes de marge, même lorsque ces dernières sont écrites avec une fonte proche de celle du corps du texte. L'évaluation quantitative, et la comparaison des performances de notre méthode avec des algorithmes concurrents par des métriques et des méthodologies d'évaluation reconnues, sont également fournies dans une large mesure.(*) Cette thèse a été financée par le Conseil Général de Seine-Saint-Denis, par l'intermédiaire du projet Demat-Factory, initié et conduit par SAFIG SA / Document page segmentation is one of the most crucial steps in document image analysis. It ideally aims to explain the full structure of any document page, distinguishing text zones, graphics, photographs, halftones, figures, tables, etc. Although to date, there have been made several attempts of achieving correct page segmentation results, there are still many difficulties. The leader of the project in the framework of which this PhD work has been funded (*) uses a complete processing chain in which page segmentation mistakes are manually corrected by human operators. Aside of the costs it represents, this demands tuning of a large number of parameters; moreover, some segmentation mistakes sometimes escape the vigilance of the operators. Current automated page segmentation methods are well accepted for clean printed documents; but, they often fail to separate regions in handwritten documents when the document layout structure is loosely defined or when side notes are present inside the page. Moreover, tables and advertisements bring additional challenges for region segmentation algorithms. Our method addresses these problems. The method is divided into four parts:1. Unlike most of popular page segmentation methods, we first separate text and graphics components of the page using a boosted decision tree classifier.2. The separated text and graphics components are used among other features to separate columns of text in a two-dimensional conditional random fields framework.3. A text line detection method, based on piecewise projection profiles is then applied to detect text lines with respect to text region boundaries.4. Finally, a new paragraph detection method, which is trained on the common models of paragraphs, is applied on text lines to find paragraphs based on geometric appearance of text lines and their indentations. Our contribution over existing work lies in essence in the use, or adaptation, of algorithms borrowed from machine learning literature, to solve difficult cases. Indeed, we demonstrate a number of improvements : on separating text columns when one is situated very close to the other; on preventing the contents of a cell in a table to be merged with the contents of other adjacent cells; on preventing regions inside a frame to be merged with other text regions around, especially side notes, even when the latter are written using a font similar to that the text body. Quantitative assessment, and comparison of the performances of our method with competitive algorithms using widely acknowledged metrics and evaluation methodologies, is also provided to a large extend.(*) This PhD thesis has been funded by Conseil Général de Seine-Saint-Denis, through the FUI6 project Demat-Factory, lead by Safig SA
|
Page generated in 0.0747 seconds