• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stability in the plane planetary three-body problem / Stabilité dans le problème à trois corps planétaire plan

Castan, Thibaut 21 April 2017 (has links)
Arnold a démontré l'existence de solutions quasipériodiques dans le problème planétaire à trois corps plan, sous réserve que la masse de deux des corps, les planètes, soit petite par rapport à celle du troisième, le Soleil. Cette condition de petitesse dépend de façon cachée de la largeur d'analyticité de l'hamiltonien du problème, dans des coordonnées transcendantes. Hénon ex- plicita un rapport de masses minimal nécessaire à l'application du théorème de Arnold. L'objectif de cette thèse sera de donner une condition suffisante sur les rapports de masses. Une première partie de mon travail consiste à estimer cette largeur d'analyticité, ce qui passe par l'étude précise de l'équation de Kepler dans le complexe, ainsi que celle des singularités complexes de la fonction perturbatrice. Une deuxième partie consiste à mettre l'hamiltonien sous forme normale, dans l'optique d'une application du théorème KAM (du nom de Kolmogorov-Arnold-Moser). Il est nécessaire d'étudier le hamiltonien séculaire pour le mettre sous une forme normale adéquate. On peut alors quantifier la non-dégénérescence de l'hamiltonien séculaire, ainsi qu'estimer la perturbation. Enfin, il faut démontrer une version quantitative fine du théorème KAM, inspirée de Pöschel, avec des constantes explicites. A l'issue de ce travail, il est montré que le théorème KAM peut être appliqué pour des rapports de masses entre planètes et étoile de l'ordre de 10^(-85). / Arnold showed the existence of quasi-periodic solutions in the plane planetary three-body prob- lem, provided that the mass of two of the bodies, the planets, is small compared to the mass of the third one, the Sun. This smallness condition depends in a sensitive way on the analyticity widths of the Hamiltonian of the three-body problem, expressed with the help of some tran- scendental coordinates. Hénon gave a minimal ratio of masses necessary to the application of Arnold’s theorem. The main objective of this thesis is to determine a sufficient condition on this ratio. A first part of this work consists in estimating these analyticity widths, which requires a precise study of the complex Kepler equation, as well as the complex singularities of the disturb- ing function. A second part consists in reworking the Hamiltonian to put it under normal form, in order to apply the KAM theorem (KAM standing for Kolmogorov-Arnold-Moser). In this aim, it is essential to work with the secular Hamiltonian to put it under a suitable normal form. We can then quantify the non-degeneracy of the secular Hamiltonian, as well as estimate the perturbation. Finally, it is necessary to derive a quantitative version of the KAM theorem, in order to identify the hypotheses necessary for its application to the plane three-body problem. After this work, it is shown that the KAM theorem can be applied for a ratio of masses that is close to 10^(−85) between the planets and the star.

Page generated in 0.0229 seconds