Spelling suggestions: "subject:"théorie algorithmic dess deux"" "subject:"théorie algorithmic dess ceux""
1 |
Congestion games with player-specific cost functions / Jeux de congestion avec fonctions de coût spécifiques à chaque joueurPradeau, Thomas 10 July 2014 (has links)
Nous considérons des jeux de congestion sur des graphes. Dans les jeux non-atomiques, nous considérons un ensemble de joueurs infinitésimaux. Chaque joueur veut aller d'un sommet à un autre en choisissant une route de coût minimal. Le coût de chaque route dépend du nombre de joueur la choisissant. Dans les jeux atomiques divisibles, nous considérons un ensemble de joueurs ayant chacun une demande à transférer d'un sommet à un autre, en la subdivisant éventuellement sur plusieurs routes. Dans ces jeux, un équilibre de Nash est atteint lorsque chaque joueur a choisi une stratégie de coût minimal. L'existence d'un équilibre de Nash est assurée sous de faibles hypothèses. Les principaux sujets sont l'unicité, le calcul, l'efficacité et la sensibilité de l'équilibre de Nash. De nombreux résultats sont connus dans le cas où les joueurs sont tous impactés de la même façon par la congestion. Le but de cette thèse est de généraliser ces résultats au cas où les joueurs ont des fonctions de coût différentes. Nous obtenons des résultats sur l'unicité de l'équilibre dans les jeux non-atomiques. Nous donnons deux algorithmes capables de calculer un équilibre dans les jeux non-atomiques lorsque les fonctions de coût sont affines. Nous obtenons une borne sur le prix de l'anarchie pour certains jeux atomiques divisibles et prouvons qu'il n'est pas borné en général, même lorsque les fonctions sont affines. Enfin, nous prouvons des résultats sur la sensibilité de l'équilibre par rapport à la demande dans les jeux atomiques divisibles / We consider congestion games on graphs. In nonatomic games, we are given a set of infinitesimal players. Each player wants to go from one vertex to another by taking a route of minimal cost, the cost of a route depending on the number of players using it. In atomic splittable games, we are given a set of players with a non-negligible demand. Each player wants to ship his demand from one vertex to another by dividing it among different routes. In these games, we reach a Nash equilibrium when every player has chosen a minimal-cost strategy. The existence of a Nash equilibrium is ensured under mild conditions. The main issues are the uniqueness, the computation, the efficiency and the sensitivity of the Nash equilibrium. Many results are known in the specific case where all players are impacted in the same way by the congestion. The goal of this thesis is to generalize these results in the case where we allow player-specific cost functions. We obtain results on uniqueness of the equilibrium in nonatomic games. We give two algorithms able to compute a Nash equilibrium in nonatomic games when the cost functions are affine. We find a bound on the price of anarchy for some atomic splittable games, and prove that it is unbounded in general, even when the cost functions are affine. Finally we find results on the sensitivity of the equilibrium to the demand in atomic splittable games
|
2 |
Game theoretical characterization of the multi-agent network expansion gameCaye, Flore 04 1900 (has links)
Dans les chaînes d’approvisionnement, les producteurs font souvent appel à des entreprises de transport pour livrer leurs marchandises. Cela peut entraîner une concurrence entre les transporteurs qui cherchent à maximiser leurs revenus individuels en desservant un produc- teur. Dans ce travail, nous considérons de telles situations où aucun transporteur ne peut garantir la livraison de la source à la destination en raison de son activité dans une région restreinte (par exemple, une province) ou de la flotte de transport disponible (par exemple, uniquement le transport aérien), pour ne citer que quelques exemples. La concurrence est donc liée à l’expansion de la capacité de transport des transporteurs.
Le problème décrit ci-dessus motive l’étude du jeu d’expansion de réseau multi-agent joué sur un réseau appartenant à de multiples transporteurs qui choisissent la capacité de leurs arcs. Simultanément, un client cherche à maximiser le flux qui passe par le réseau en décidant de la politique de partage qui récompense chacun des transporteurs. Le but est de déterminer un équilibre de Nash pour le jeu, en d’autres termes, la strategie d’extension de capacité et de partage la plus rationnelle pour les transporteurs et le client, respectivement. Nous rappelons la formulation basée sur les arcs proposée dans la littérature, dont la solution est l’équilibre de Nash avec le plus grand flux, et nous identifions ses limites. Ensuite, nous formalisons le concept de chemin profitable croissant et nous montrons son utilisation pour établir les conditions nécessaires et suffisantes pour qu’un vecteur de stratégies soit un équilibre de Nash. Ceci nous conduit à la nouvelle formulation basée sur le chemin. Enfin, nous proposons un renforcement du modèle basé sur les arcs et une formulation hybride arc- chemin. Nos résultats expérimentaux soutiennent la valeur des nouvelles inégalités valides obtenues à partir de notre caractérisation des équilibres de Nash avec des chemins croissants rentables. Nous concluons ce travail avec les futures directions de recherche pavées par les contributions de cette thèse. / In supply chains, manufacturers often use transportation companies to deliver their goods. This can lead to competition among carriers seeking to maximize their individual revenues by serving a manufacturer. In this work, we consider such situations where no single carrier can guarantee delivery from source to destination due to its operation in a restricted region (e.g., a province) or the available transportation fleet (e.g., only air transportation), to name a few examples. Therefore, competition is linked to the expansion of transportation capacity by carriers.
The problem described above motivates the study of the multi-agent network expansion game played over a network owned by multiple transporters who choose their arcs’ capacity. Simultaneously, a customer seeks to maximize the flow that goes through the network by deciding the sharing policy rewarding each of the transporters. The goal is to determine a Nash equilibrium for the game, in simple words, the most rational capacity expansion and sharing policy for the transporters and the customer, respectively. We recap the arc-based formulation proposed in literature, whose solution is the Nash equilibirum with the largest flow, and we identify its limitations. Then, we formalize the concept of profitable increasing path and we show its use to establish necessary and sufficient conditions for a vector of strategies to be a Nash equilibrium. This lead us to the first path-based formulation. Finally, we propose a strengthening for the arc-based model and a hybrid arc-path formulation. Our experimental results support the value of the new valid inequalities obtained from our characterization of Nash equilibria with profitable increasing paths. We conclude this work with the future research directions paved by the contributions of this thesis.
|
Page generated in 0.1125 seconds