• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Grothendieck et les topos : rupture et continuité dans les modes d'analyse du concept d'espace topologique

Bélanger, Mathieu 04 1900 (has links)
La thèse présente une analyse conceptuelle de l'évolution du concept d'espace topologique. En particulier, elle se concentre sur la transition des espaces topologiques hérités de Hausdorff aux topos de Grothendieck. Il en ressort que, par rapport aux espaces topologiques traditionnels, les topos transforment radicalement la conceptualisation topologique de l'espace. Alors qu'un espace topologique est un ensemble de points muni d'une structure induite par certains sous-ensembles appelés ouverts, un topos est plutôt une catégorie satisfaisant certaines propriétés d'exactitude. L'aspect le plus important de cette transformation tient à un renversement de la relation dialectique unissant un espace à ses points. Un espace topologique est entièrement déterminé par ses points, ceux-ci étant compris comme des unités indivisibles et sans structure. L'identité de l'espace est donc celle que lui insufflent ses points. À l'opposé, les points et les ouverts d'un topos sont déterminés par la structure de celui-ci. Qui plus est, la nature des points change: ils ne sont plus premiers et indivisibles. En effet, les points d'un topos disposent eux-mêmes d'une structure. L'analyse met également en évidence que le concept d'espace topologique évolua selon une dynamique de rupture et de continuité. Entre 1945 et 1957, la topologie algébrique et, dans une certaine mesure, la géométrie algébrique furent l'objet de changements fondamentaux. Les livres Foundations of Algebraic Topology de Eilenberg et Steenrod et Homological Algebra de Cartan et Eilenberg de même que la théorie des faisceaux modifièrent profondément l'étude des espaces topologiques. En contrepartie, ces ruptures ne furent pas assez profondes pour altérer la conceptualisation topologique de l'espace elle-même. Ces ruptures doivent donc être considérées comme des microfractures dans la perspective de l'évolution du concept d'espace topologique. La rupture définitive ne survint qu'au début des années 1960 avec l'avènement des topos dans le cadre de la vaste refonte de la géométrie algébrique entreprise par Grothendieck. La clé fut l'utilisation novatrice que fit Grothendieck de la théorie des catégories. Alors que ses prédécesseurs n'y voyaient qu'un langage utile pour exprimer certaines idées mathématiques, Grothendieck l'emploie comme un outil de clarification conceptuelle. Ce faisant, il se trouve à mettre de l'avant une approche axiomatico-catégorielle des mathématiques. Or, cette rupture était tributaire des innovations associées à Foundations of Algebraic Topology, Homological Algebra et la théorie des faisceaux. La théorie des catégories permit à Grothendieck d'exploiter le plein potentiel des idées introduites par ces ruptures partielles. D'un point de vue épistémologique, la transition des espaces topologiques aux topos doit alors être vue comme s'inscrivant dans un changement de position normative en mathématiques, soit celui des mathématiques modernes vers les mathématiques contemporaines. / The thesis presents a conceptual analysis of the evolution of the topological space concept. More specifically, it looks at the transition from topological spaces inherited from Hausdorff to Grothendieck toposes. This analysis intends to show that, in comparison to traditional topological spaces, toposes radically transform the topological conceptualization of space. While a topological space is a set of points equipped with a structure induced by some of its subsets called open, a topos is a category satisfying exactness properties. The most important aspect of this transformation is the reversal of the dialectic between a space and its points. A topological space is totally determined by its points who are in turn understood as being indivisible and devoided of any structure. The identity of the space is thus that induced by its points. Conversely, the points and the open of a topos are determined by its very structure. This entails a change in the nature of the points: they are no longer seen as basic nor as indivisible. Indeed, the points of a topos actually have a structure. The analysis also shows that the evolution of the topological space concept followed a pattern of rupture and continuity. From 1945 to 1957, algebraic topology and, to a lesser extend, algebraic geometry, went through fundamental changes. The books Foundations of Algebraic Topology by Eilenberg and Steenrod and Homological Algebra by Cartan and Eilenberg as well as sheaf theory deeply modified the way topological spaces were studied. However, these ruptures were not deep enough to change the topological conceptualization of space itself. From the point of view of the evolution of the topological space concept, they therefore must be seen as microfractures. The definitive rupture only occurred in the early 1960s when Grothendieck introduced toposes in the context of his reform of algebraic geometry. The key was his novel use of category theory. While mathematicians before him saw category theory as a convenient language to organize or express mathematical ideas, Grothendieck used it as a tool for conceptual clarification. Grothendieck thus put forward a new approach to mathematics best described as axiomatico-categorical. Yet, this rupture was dependent of the innovations associated with Foundations of Algebraic Topology, Homological Algebra and sheaf theory. It is category theory that allowed Grothendieck to reveal the full potentiel of the ideas introduced by these partial ruptures. From an epistemic point of view, the transition from topological spaces to toposes must therefore be seen as revealing a change of normative position in mathematics, that is that from modernist mathematics to contemporary mathematics.
2

Approches de topologie algébrique pour l'analyse d'images / Algebraic topology approaches for image analysis

Assaf, Rabih 19 January 2018 (has links)
La topologie algébrique, bien que domaine abstrait des mathématiques, apporte de nouveaux concepts pour le traitement d'images. En effet, ces tâches sont complexes et restent limitées par différents facteurs tels que la nécessité d’utiliser un paramétrage, l'influence de l'arrière-plan ou la superposition d'objets. Nous proposons ici des méthodes dérivées de la topologie algébrique qui diffèrent des méthodes classiques de traitement d'images par l’intégration d’informations locales vers des échelles globales grâce à des invariants topologiques. Une première méthode de segmentation d'images a été développée en ajoutant aux caractéristiques statistiques classiques d’autres de nature topologique calculées par homologie persistante. Une autre méthode basée sur des complexes topologiques a été développée dans le but de segmenter les objets dans des images 2D et 3D. Cette méthode segmente des objets dans des images multidimensionnelles et fournit une réponse à certains problèmes habituels en restant robuste vis à vis du bruit et de la variabilité de l'arrière-plan. Son application aux images de grande taille peut se faire en utilisant des superpixels. Nous avons également montré que l'homologie relative détecte le mouvement d’objets dans une séquence d'images qui apparaissent et disparaissent du début à la fin. Enfin, nous posons les bases d’un ensemble de méthodes d'analyse d'images basé sur la théorie des faisceaux qui permet de fusionner des données locales en un ensemble cohérent. De plus, nous proposons une seconde approche qui permet de comprendre et d'interpréter la structure d’une image en utilisant les invariants fournis par la cohomologie des faisceaux. / Algebraic topology, which is often appears as an abstract domain of mathematics, can bring new concepts in the execution of the image processing tasks. Indeed, these tasks might be complex and limited by different factors such as the need of prior parameters, the influence of the background, the superposition of objects. In this thesis, we propose methods derived from algebraic topology that differ from classical image processing methods by integrating local information at global scales through topological invariants. A first method of image segmentation was developed by adding topological characteristics calculated through persistent homology to classical statistical characteristics. Another method based on topological complexes built from pixels was developed with the purpose to segment objects in 2D and 3D images. This method allows to segment objects in multidimensional images but also to provide an answer to known issues in object segmentation remaining robust regarding the noise and the variability of the background. Our method can be extended to large scale images by using the superpixels concept. We also showed that the relative version of homology can be used effectively to detect the movement of objects in image sequences. This method can detect and follow objects that appear and disappear in a video sequence from the beginning to the end of the sequence. Finally, we lay the foundations of a set of methods of image analysis based on sheaf theory that allows the merging of local data into a coherent whole. Moreover, we propose a second approach that allows to understand and interpret scale analysis and localization by using the sheaves cohomology.
3

Grothendieck et les topos : rupture et continuité dans les modes d'analyse du concept d'espace topologique

Bélanger, Mathieu 04 1900 (has links)
La thèse présente une analyse conceptuelle de l'évolution du concept d'espace topologique. En particulier, elle se concentre sur la transition des espaces topologiques hérités de Hausdorff aux topos de Grothendieck. Il en ressort que, par rapport aux espaces topologiques traditionnels, les topos transforment radicalement la conceptualisation topologique de l'espace. Alors qu'un espace topologique est un ensemble de points muni d'une structure induite par certains sous-ensembles appelés ouverts, un topos est plutôt une catégorie satisfaisant certaines propriétés d'exactitude. L'aspect le plus important de cette transformation tient à un renversement de la relation dialectique unissant un espace à ses points. Un espace topologique est entièrement déterminé par ses points, ceux-ci étant compris comme des unités indivisibles et sans structure. L'identité de l'espace est donc celle que lui insufflent ses points. À l'opposé, les points et les ouverts d'un topos sont déterminés par la structure de celui-ci. Qui plus est, la nature des points change: ils ne sont plus premiers et indivisibles. En effet, les points d'un topos disposent eux-mêmes d'une structure. L'analyse met également en évidence que le concept d'espace topologique évolua selon une dynamique de rupture et de continuité. Entre 1945 et 1957, la topologie algébrique et, dans une certaine mesure, la géométrie algébrique furent l'objet de changements fondamentaux. Les livres Foundations of Algebraic Topology de Eilenberg et Steenrod et Homological Algebra de Cartan et Eilenberg de même que la théorie des faisceaux modifièrent profondément l'étude des espaces topologiques. En contrepartie, ces ruptures ne furent pas assez profondes pour altérer la conceptualisation topologique de l'espace elle-même. Ces ruptures doivent donc être considérées comme des microfractures dans la perspective de l'évolution du concept d'espace topologique. La rupture définitive ne survint qu'au début des années 1960 avec l'avènement des topos dans le cadre de la vaste refonte de la géométrie algébrique entreprise par Grothendieck. La clé fut l'utilisation novatrice que fit Grothendieck de la théorie des catégories. Alors que ses prédécesseurs n'y voyaient qu'un langage utile pour exprimer certaines idées mathématiques, Grothendieck l'emploie comme un outil de clarification conceptuelle. Ce faisant, il se trouve à mettre de l'avant une approche axiomatico-catégorielle des mathématiques. Or, cette rupture était tributaire des innovations associées à Foundations of Algebraic Topology, Homological Algebra et la théorie des faisceaux. La théorie des catégories permit à Grothendieck d'exploiter le plein potentiel des idées introduites par ces ruptures partielles. D'un point de vue épistémologique, la transition des espaces topologiques aux topos doit alors être vue comme s'inscrivant dans un changement de position normative en mathématiques, soit celui des mathématiques modernes vers les mathématiques contemporaines. / The thesis presents a conceptual analysis of the evolution of the topological space concept. More specifically, it looks at the transition from topological spaces inherited from Hausdorff to Grothendieck toposes. This analysis intends to show that, in comparison to traditional topological spaces, toposes radically transform the topological conceptualization of space. While a topological space is a set of points equipped with a structure induced by some of its subsets called open, a topos is a category satisfying exactness properties. The most important aspect of this transformation is the reversal of the dialectic between a space and its points. A topological space is totally determined by its points who are in turn understood as being indivisible and devoided of any structure. The identity of the space is thus that induced by its points. Conversely, the points and the open of a topos are determined by its very structure. This entails a change in the nature of the points: they are no longer seen as basic nor as indivisible. Indeed, the points of a topos actually have a structure. The analysis also shows that the evolution of the topological space concept followed a pattern of rupture and continuity. From 1945 to 1957, algebraic topology and, to a lesser extend, algebraic geometry, went through fundamental changes. The books Foundations of Algebraic Topology by Eilenberg and Steenrod and Homological Algebra by Cartan and Eilenberg as well as sheaf theory deeply modified the way topological spaces were studied. However, these ruptures were not deep enough to change the topological conceptualization of space itself. From the point of view of the evolution of the topological space concept, they therefore must be seen as microfractures. The definitive rupture only occurred in the early 1960s when Grothendieck introduced toposes in the context of his reform of algebraic geometry. The key was his novel use of category theory. While mathematicians before him saw category theory as a convenient language to organize or express mathematical ideas, Grothendieck used it as a tool for conceptual clarification. Grothendieck thus put forward a new approach to mathematics best described as axiomatico-categorical. Yet, this rupture was dependent of the innovations associated with Foundations of Algebraic Topology, Homological Algebra and sheaf theory. It is category theory that allowed Grothendieck to reveal the full potentiel of the ideas introduced by these partial ruptures. From an epistemic point of view, the transition from topological spaces to toposes must therefore be seen as revealing a change of normative position in mathematics, that is that from modernist mathematics to contemporary mathematics.

Page generated in 0.0644 seconds