Spelling suggestions: "subject:"théorie dess extrêmement"" "subject:"théorie deus extrêmement""
1 |
Estimation des paramètres pour des modèles adaptés aux séries de records / Parameter estimation for models adapted to record seriesHoayek, Anis 25 November 2016 (has links)
Dans une série chronologique, une observation est appelée record au temps «t» si sa valeur est supérieure à toutes les valeurs précédentes. Suivant l’augmentation de «t», considérons la suite des valeurs des records et la suite des indices d’occurrence des records. Les propriétés stochastiques des suites de valeurs des records ont été largement étudiées dans le cas où les observations sont des variables aléatoires indépendantes et identiquement distribuées (iid). Il se trouve que beaucoup de ces propriétés sont universelles, c’est-à-dire tiennent pour n’importe quelle loi de probabilité commune des observations. En particulier, les records ont tendance à devenir plus espacés dans le temps à mesure que «t» augmente. Cependant, ce n’est pas ce que l’on observe dans de nombreux jeux de données réelles. Ceci a conduit à l’élaboration de modèles plus complexes pour fournir une meilleure prédiction.Le modèle, peut-être le plus simple mais en tout cas le plus populaire, pour une série de records issus d’observations indépendantes mais non identiquement distribuées est le modèle à dérive linéaire (LDM). Ce modèle a été étudié par de nombreux auteurs et trouvé en accord avec certains types de données où l’hypothèse iid ne tient pas. Cependant, dans des situations pratiques, l’utilisation du LDM nécessite la détermination du paramètre de dérive du modèle et cela pousse le problème dans le domaine de la statistique.Il existe une similitude entre les records et le traitement de données censurées en analyse de survie. En particulier, toutes les observations qui tombent entre deux records consécutifs et au-delà du dernier record peuvent être considérées comme des observations censurées par le dernier record observé. Pour mettre en évidence cette similitude, on introduit la suite des indicatrices de records qui prennent la valeur 1 si l’observation est un record et 0 sinon.Un autre modèle populaire est le modèle Yang-Nevzorov. Ce modèle est intéressant car il a la structure d’un modèle à risque proportionnel en analyse de survie, lequel a montré son utilité dans ce domaine pour modéliser de nombreux jeux de données. Cependant, à notre connaissance, l’inférence statistique pour le modèle Yang-Nevzorov a été peu développé.Le but de ce travail est d’introduire certains estimateurs des différents paramètres des modèles LDM et Yang respectivement et d’en obtenir leurs propriétés statistiques. Il est montré que le mécanisme de censure est informatif pour certains paramètres. Cela justifie l’analyse des qualités d’estimateurs qui peuvent être obtenus à partir de ces indicatrices de records. Nous donnons quelques propriétés exactes et asymptotiques de ces estimateurs. Il se trouve que dans le modèle de Yang, le comportement des différents estimateurs est indépendant de la distribution sous-jacente. Notons que nos estimateurs peuvent être utilisés même lorsque les valeurs exactes des records sont elles-mêmes indisponibles ou de mauvaise qualité et les seules indicatrices sont disponibles ou fiables. En outre, il est montré que des tests d’ajustement du modèle de Yang peuvent aussi être dérivés de ces indicatrices. Ces tests ont même des capacités diagnostiques qui peuvent aider à suggérer des corrections au modèle.Toujours dans le contexte d’un modèle de Yang, nous étudions le comportement stochastique du temps inter-records et nous donnons sa loi asymptotique, indépendamment de la loi des va sous-jacentes. De plus, nous appliquons nos résultats théoriques à des données analysées précédemment par Yang.Enfin, nous passons à l’utilisation de la totalité des données disponibles (valeurs et indices/indicatrices de records) afin de calculer, par plusieurs méthodes, des estimateurs des paramètres des modèles LDM et Yang-Nevzorov. De plus, nous introduisons des tests statistiques qui nous aident à vérifier la conformité du choix de la distribution sous-jacente des observations et à choisir entre un modèle LDM et de Yang. / In a time series, an observation is called a record at time «t» if its value is greater than all previous values. As «t» increases, consider the sequence of records and the sequence of indices of occurrence of the records.The stochastic properties of sequences of record values have been much studied in the case where the observations are independent and identically distributed (iid) random variables. It turns out that many of these properties are universal, i.e. they hold for any cumulative distribution function for the underlying observations. In particular, records have a tendency to become further separated in time as «t» increases. However, this is not what is observed in many real data sets. This has lead to the development of more comprehensive models to provide better prediction.One of the simplest and popular model for a series of records extracted from independent but not identically distributed observations is the linear drift model (LDM). This model has been studied by many authors and found to be in agreement with some data sets where the iid assumption does not hold. However, for its uses in practical situations, the LDM requires the specification of the drift parameter of the model and this brings the problem into the realm of statistics.There are similarities between records and censored data in e.g. survival analysis. In particular, all observations that fall between two consecutive records and beyond the last record, can be seen as censored, by the last observed record. To highlight these similarities, consider the sequence of record indicators which are 1 if the observation is a record and 0 otherwise.Another popular model is the Yang-Nevzorov model. This model is interesting because it has the structure of a proportional hazard model, which have been shown to provide good fit to many data sets in survival analysis. However, to the best of our knowledge, statistical inference for the Yang- Nevzorov model has been little developed.The goal of this work is to introduce some estimators of the parameters in LDM and Yang’s model respectively and derive their statistical properties. It is shown that the censoring mechanism is informative for certain parameters. This justifies investigating the usefulness of estimators that can be extracted from record indicators. We give some exact and asymptotic properties of these estimators. It turns out that in a Yang’s model, the behavior of these estimators is distribution-free, i.e. does not involve the underlying CDF. Note that our estimators can be used even when the exact value of the records are themselves unavailable or of poor quality and only the indicators of their occurrence are available or trustworthy. Also, it is shown that distribution-free goodness-of-fit tests for Yang’s model can be derived from these indicators. These tests even have some diagnostic capabilities that can help in suggesting corrections to the model.Still in the context of a Yang’s model, we study the stochastic behavior of the inter-record time and give its asymptotic distribution regardless of the choice of the underlying distribution. In addition, we apply our theoretical results to a previously analyzed data set.Finally, we turn to the use of all available data (record values and indices/indicators) in order to calculate, by several methods, estimators of parameters in LDM and Yang-Nevzorov’s model. In addition, we introduce statistical tests that help us to check the conformity of the choice of the underlying distribution and to choose between LDM and Yang.
|
2 |
Quelques inégalités de superconcentration : théorie et applications / Some superconcentration inequalities : theory and applicationsTanguy, Kévin 29 June 2017 (has links)
Cette thèse porte sur le phénomène de superconcentration qui apparaît dans l'étude des fluctuations de divers modèles de la recherche actuelle (matrices aléatoires, verres de spins, champ libre gaussien discret, percolation,...). Plus particulièrement, la thèse est consacrée à l'examen d'inégalités de superconcentration à l'échelle exponentielle ; notamment pour des supremum de familles gaussiennes. Les outils mis en œuvre comprennent la propriété d'hypercontractivité de semi-groupes de Markov. Par ailleurs, celle-ci a conduit à une version d'ordre supérieur d'une inégalité sur la variance de M. Talagrand. La première partie de la thèse présente brièvement les notions essentielles de la théorie classique de la concentration de la mesure ainsi que les principaux outils, à savoir : méthodes d'interpolations à l'aide de semi-groupes markoviens, inégalités fonctionnelles, transport optimal et isopérimétrie. Un survol de la littérature existante est ensuite proposé. La deuxième partie du manuscrit rassemble, dans différents chapitres, les travaux que nous avons effectués durant cette thèse. Une grande partie de ceux-ci repose sur la représentation dynamique de la variance le long du semi-groupe d'Ornstein-Uhlenbeck et sa propriété d'hypercontractivité. De nouvelles inégalités de superconcentration sont obtenues au niveau exponentiel et illustrées sur des exemples provenant de la théorie des extrêmes. Le cadre de l'hypercontractivité a également conduit à une nouvelle inégalité sur le cube discret, celle-ci permettant une application sur l'influence d'ordre deux de fonctions booléennes. Enfin, le dernier chapitre aborde la phénomène de superconcentration par le transport optimal. Des majorations de la variance et des inégalités de déviations non asymptotiques pour le maximum de variables aléatoires indépendantes et de même loi sont obtenues. A nouveau, des illustrations pour des lois usuelles, appartenant aux différents domaines d'attraction de la théorie des extrêmes, sont proposées / The thesis focuses on the superconcentration phenomenon which appears in the study of the fluctuations of various moelds from current research (random matrices, spin glasses, discrete Gaussien free field, percolation,...). More precisely, the thesis mainly deals with superconcentration inequalities at an exponentiel level ; in particular for supremum of familu of Gaussian random variables. The principal tools used during this study are the hypercontractive property satisfied by some Markov semi-groups ; this approach leads to an extension of higher order of an inequality due to M. Talagrand. The first part of the thesis exposes the fundamental notions of concentration of measure, interpolation methods with Markovians semi-groups, functional inequalities, optimal transport and isoperimetry. Then, a survey of the literature concerning superconcentration phenomenon is done. The second part of the manuscript bring together, in different chapters, the results obtained during the thesis. Most of them are based on the dynamical representation of the variance along the semi-group of Ornstein-Uhlenbeck and its hypercontractive property. New ineqaulities are obtained at an exponential level and are illustrated on examples coming from extreme theory. This hypercontractive framework also gave birth to a new inequality on the discrete cube which leads to an application on the influence of second order of boolean functions. Finally, the last chapter is about the superconcentration phenomenon with an optimal transport approach. Some non asymptotic bounds on the variance and deviations inequalities are obtained for the maximum of an i.i.d. sample. Again, illustrations for usual laws of probability, belonging to different domain of attraction from extreme theory, are given.
|
3 |
Extrema de processus stochastiques. Propriétés asymptotiques de tests d'hypothèsesMercadier, Cécile 01 July 2005 (has links) (PDF)
Cette thèse se divise en deux parties.<br />La première partie s'inscrit dans la lignée des résultats composant la théorie des valeurs extrêmes. Ces analyses se destinent au calcul de probabilité des événements rares. Le premier travail donne l'ordre asymptotique du maximum d'un processus gaussien, non-stationnaire à variance constante. Le second travail caractérise la loi du maximum en temps fini, et donc pour des niveaux de tous ordres. La procédure d'estimation a d'ailleurs donné naissance à une boîte à outils Matlab appelée MAGP. La seconde partie regroupe deux applications statistiques. D'une part, la distribution et la puissance du test, basé sur le maximum de vraisemblance, sont étudiées pour des modèles de mélange. D'autre part, la construction d'un test de sphéricité est envisagée à l'aide des valeurs propres extrêmes des matrices de covariance.
|
Page generated in 0.0772 seconds