• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications de la théorie géométrique des invariants à la géométrie diophantienne

Maculan, Marco 07 December 2012 (has links) (PDF)
: La théorie géométrique des invariants constitue un domaine central de la géométrie algébrique d'aujourd'hui : développée par Mumford au début des années soixante, elle a conduit à des progrès considérables dans l'étude des variétés projectives, notamment par la construction d'espaces de modules. Dans les vingt dernières années des interactions entre la théorie géométrique des invariants et la géométrie arithmétique -- plus précisément la théorie des hauteurs et la géométrie d'Arakelov -- ont été étudiés par divers auteurs (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). Dans cette thèse nous nous proposons d'un côté d'étudier de manière systématique la théorie géométrique des invariants dans le cadre de la géométrique d'Arakelov ; de l'autre de montrer que ces résultats permettent une nouvelle approche géométrique (distincte aussi de la méthode des pentes développée par Bost) aux résultats d'approximation diophantienne, tels que le Théorème de Roth et ses généralisations par Lang, Wirsing et Vojta.
2

Applications de la théorie géométrique des invariants à la géométrie diophantienne / Applications of geometric invariant theory to diophantine geometry

Maculan, Marco 07 December 2012 (has links)
: La théorie géométrique des invariants constitue un domaine central de la géométrie algébrique d'aujourd'hui : développée par Mumford au début des années soixante, elle a conduit à des progrès considérables dans l'étude des variétés projectives, notamment par la construction d'espaces de modules. Dans les vingt dernières années des interactions entre la théorie géométrique des invariants et la géométrie arithmétique -- plus précisément la théorie des hauteurs et la géométrie d'Arakelov -- ont été étudiés par divers auteurs (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). Dans cette thèse nous nous proposons d'un côté d'étudier de manière systématique la théorie géométrique des invariants dans le cadre de la géométrique d'Arakelov ; de l'autre de montrer que ces résultats permettent une nouvelle approche géométrique (distincte aussi de la méthode des pentes développée par Bost) aux résultats d'approximation diophantienne, tels que le Théorème de Roth et ses généralisations par Lang, Wirsing et Vojta. / Geometric invariant theory is a central subject in nowadays' algebraic geometry : developed by Mumford in the early sixties, it enhanced the knowledge of projective varieties through the construction of moduli spaces. During the last twenty years, interactions between geometric invariant theory and arithmetic geometric --- more precisely, height theory and Arakelov geometry --- have been exploited by several authors (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). In this thesis we firstly study in a systematic way how geometric invariant theory fits in the framework of Arakelov geometry; then we show that these results give a new geometric approach to questions in diophantine approximation, proving Roth's Theorem and its recent generalizations by Lang, Wirsing and Vojta.
3

Espaces de modules de (G,h)-constellations

Becker, Tanja 21 October 2011 (has links) (PDF)
Nous construisons l'espace de modules M_θ(X) des (G,h)-constellations θ-stables sur X pour un groupe réductif G qui agit sur un schéma affine X sur C et pour une fonction de Hilbert h: Irr G → N_0. Cet espace de modules est une généralisation commune du schéma de Hilbert invariant d'après Alexeev et Brion et de l'espace de modules des G-constellations θ-stables pour un groupe fini G introduit par Craw et Ishii. Notre construction d'un morphisme M_θ(X) → X//G fait de cet espace de modules un candidat pour une résolution des singularités du quotient X//G. De plus, nous déterminons le schéma de Hilbert invariant de la fibre en zéro de l'application moment d'une action de Sl_2 sur (C²)⁶. C'est un des premiers exemples d'un schéma de Hilbert invariant avec multiplicités. Ceci nous amène à décrire une façon générale de procéder pour effectuer de tels calculs. En outre, nous démontrons que notre schéma de Hilbert invariant est lisse et connexe : Cet exemple est donc une résolution des singularités de la réduction symplectique de l'action.
4

Résultats de stabilité en théorie des représentations par des méthodes géométriques / Geometric Methods for stability-type results in representation theory

Pelletier, Maxime 24 November 2017 (has links)
Les coefficients de Kronecker, qui sont indexés par des triplets de partitions et décrivent la décomposition du produit tensoriel de deux représentations irréductibles d'un groupe symétrique en somme directe de telles représentations, ont été introduits par Francis Murnaghan dans les années 1930. Il a notamment remarqué un comportement particulier de ces coefficients : à partir de n'importe quel triplet de partitions, on peut construire une certaine suite de coefficients de Kronecker qui est stationnaire.Afin de généraliser cette propriété, John Stembridge a introduit en 2014 une notion de stabilité pour les triplets de partitions, ainsi qu'une autre notion -- celle de triplet faiblement stable -- dont il a conjecturé qu'elle serait équivalente à la précédente. Cette conjecture a été démontrée peu après par Steven Sam et Andrew Snowden, par des méthodes algébriques.Dans cette thèse, on donne notamment une autre démonstration -- cette fois géométrique -- de cette équivalence grâce à l'interprétation classique des coefficients de Kronecker comme dimensions d'espaces de sections de fibrés en droites sur des variétés de drapeaux. Ces méthodes permettent également de s'intéresser à quelques questions plus précises : la stabilité dont on parle consiste en le fait que certaines suites de coefficients sont stationnaires, et on se demande à partir de quand ces suites deviennent constantes.On applique ensuite ces techniques à d'autres exemples de coefficients de branchement, puis on s'intéresse à un autre problème : celui de produire des triplets stables de partitions. On généralise ainsi un résultat obtenu indépendamment par Laurent Manivel et Ernesto Vallejo sur ce sujet / The Kronecker coefficients, which are indexed by triples of partitions and describe how the tensor product of two irreducible representations of the symmetric group decomposes as a direct sum of such representations, were introduced by Francis Murnaghan in the 1930s. He notably noticed a remarkable behaviour of these coefficients: from any triple of partitions, one can construct a particular sequence of Kronecker coefficients which eventually stabilises.In order to generalise this property, John Stembridge introduced in 2014 a notion of stability for triples of partitions, as well as another notion -- of weakly stable triple -- about which he conjectured that it should be equivalent to the previous one. This conjecture was proven shortly after by Steven Sam and Andrew Snowden, with algebraic methods.In this thesis we especially give another proof -- this time geometric -- of this equivalence, using the classical expression of the Kronecker coefficients as dimensions of spaces of sections of line bundles on flag varieties. With these methods we can also be interested in more specific questions: since the stability which we discuss means that some sequences of coefficients stabilise, one can wonder at which point these sequences become constant.We then apply these techniques to other examples of branching coefficients, and are also interested in another problem: how can we produce stable triples of partitions? We thus generalise a result obtained independently by Laurent Manivel and Ernesto Vallejo on this subject

Page generated in 0.136 seconds