• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Objets astrophysiques compacts en gravité modifiée / Compact astrophysical objects in modified gravity

Lehebel, Antoine 02 July 2018 (has links)
Vingt années se sont écoulées depuis la découverte de l'expansion accélérée de l'Univers, ravivant l'intérêt pour les théories alternatives de la gravité. Ajouter un champ scalaire à la métrique habituelle de la relativité générale est l'une des manières les plus simples de modifier notre théorie de la gravité. En parallèle, nos connaissances sur les trous noirs et les étoiles à neutrons sont en plein essor, grâce notamment au développement de l'astronomie par ondes gravitationnelles. Cette thèse se situe au carrefour entre les deux domaines : elle étudie les propriétés des objets compacts dans les théories tenseur-scalaire généralisées. Je commence par rappeler les théorèmes d'unicité essentiels établis depuis les années soixante-dix. Après avoir présenté le théorème d'unicité pour les trous noirs en théorie de Horndeski, je l'étends aux étoiles. La deuxième partie de cette thèse détaille les différentes manières de contourner ce théorème. Parmi elles, je présente des solutions où la dépendance temporelle du champ scalaire permet de le raccorder à une solution cosmologique, mais aussi des trous noirs statiques et asymptotiquement plats. Dans la troisième partie, j'établis un critère important pour la stabilité de ces solutions, qui s'appuie sur leur structure causale. C'est aussi l'occasion d'étudier la propagation des ondes gravitationnelles au voisinage de trous noirs, et de sélectionner les théories dans lesquelles les ondes gravitationnelles se propagent à la même vitesse que la lumière. / Twenty years have passed since the discovery of the accelerated expansion of the Universe, reviving the interest for alternative theories of gravity. Adding a scalar degree of freedom to the usual metric of general relativity is one of the simplest ways to modify our gravitational theory. In parallel, our knowledge about black holes and neutron stars is booming, notably thanks to the advent of gravitational wave astronomy. This thesis is at the crossroads between the two fields, investigating the properties of compact objects in extended scalar-tensor theories. I start by reviewing essential no-hair results established since the seventies. After discussing the no-hair theorem proposed for black holes in Horndeski theory, I present its extension to stars. The second part of the thesis investigates in detail the various ways to circumvent this theorem. These notably include solutions with a time-dependent scalar field in order to match cosmological evolution, but also static and asymptotically flat configurations. In a third part, I establish an important stability criterion for these solutions, based on their causal structure. It is also the occasion to study the propagation of gravitational waves in black hole environments, and to select the theories where gravitational waves travel at the same speed as light.
2

Champs scalaires en cosmologie: discussions sur les principes d'équivalence et cosmologique.

Larena, Julien 17 September 2007 (has links) (PDF)
La cosmologie est actuellement à un tournant de l'histoire de son développement. L'abondance de données observationnelles diverses et précises a permis de développer et de confirmer un modèle standard de concordance pour décrire les grandes échelles de l'Univers. Fort de ce succès, il devient crucial d'interroger les fondements de ce modèle standard, afin, notamment, d'éclaircir l'origine d'environ 90 % du contenu énergétique de l'Univers, qualifié de matière et d'énergie sombres.<br />En lien avec le problème de l'énergie sombre, cette thèse se propose d'explorer, à travers les propriétés dynamiques de champs scalaires, deux principes qui se trouvent au coeur de la cosmologie: les principes d'équivalence et cosmologique.<br />Le principe d'équivalence est abordé à travers les théories scalaire-tenseur de la gravité, permettant d'intégrer la Relativité Générale dans un cadre large de théories respectant la version faible du principe d'équivalence tout en permettant de tester sa version forte. Dans cette perspective, les propriétés dynamiques et les conséquences cosmologiques de ces théories sont discutées.<br />Le principe cosmologique quant à lui est reformulé; ses contours sont redéfinis, menant à la formulation de modèles cosmologiques différents du modèle standard, par le biais des cosmologies inhomogènes moyennées. Ces modèles permettent de prendre en compte de façon consistante la structuration à petites échelles de l'Univers et son homogénéité aux grandes échelles, ouvrant ainsi la possibilité d'expliquer l'énergie sombre par la formation des structures; il est également possible de les mettre en correspondance avec l'apparition de champs scalaires dans le cadre du modèle standard.
3

Les mystères de l'expansion accélérée de l'univers

Gannouji, Radouane 08 July 2008 (has links) (PDF)
Plusieurs étapes furent nécessaires à la construction du modèle standard de la cosmologie, de la vision de notre Univers, de la représentation de l'infiniment grand. De l'année 1915 avec l'élaboration de la relativité générale aux différentes observations de l'Univers, celles-ci ont permis d'imaginer un univers en expansion décélérée. Cependant, en 1998, deux équipes américaines mirent en lumière son accélération. Ce fait fût largement confirmé depuis lors. Ce pose alors une question simple, quelle en est la raison ? Pour cela de très nombreux modèles d'énergie noire furent élaborés. J'aborde ainsi dans cette thèse deux grands modèles. D'une part les théories scalaire-tenseur où l'on a pu construire différentes contraintes sur la viabilité du modèle; et d'autres part les théories dites f(R), où une modification de l'action par des termes géométriques entraîne une accélération de l'univers. La construction dans ces modèles de la fonction m(r) nous a permis par une méthode simple et élégante de rendre compte de l'évolution cosmologique de l'univers décrit par de tels lagrangiens. Ainsi de nombreux modèles jusqu'alors étudié furent rejeté, car ils ne possèdent pas de phase de matière. Enfin nous avons étudié la croissance des perturbations. En effet les perturbations à l'origine des grandes structures vont croitre différemment selon les modèles, selon l'Univers considéré. Nous avons ainsi mis en évidence une importante distinction entre les modèles d'énergie noire en relativité générale et les théories scalaire-tenseur. Des observations plus précises permettront alors de distinguer les théories de gravitation modifiée et les modèles d'énergie noire en relativité générale.

Page generated in 0.0787 seconds