Spelling suggestions: "subject:"théorie spectral"" "subject:"héorie spectral""
1 |
Croissance des fonctions propres du laplacien sur un domaine circulaireLavoie, Guillaume 07 1900 (has links)
Ce mémoire a pour but d'étudier les propriétés des solutions à l'équation
aux valeurs propres de l'opérateur de Laplace sur le disque lorsque les
valeurs propres tendent vers l'in ni. En particulier, on s'intéresse au taux
de croissance des normes ponctuelle et L1.
Soit D le disque unitaire et @D sa frontière (le cercle unitaire). On s'inté-
resse aux solutions de l'équation aux valeurs propres f = f avec soit des
conditions frontières de Dirichlet (fj@D = 0), soit des conditions frontières de
Neumann ( @f
@nj@D = 0 ; notons que sur le disque, la dérivée normale est simplement
la dérivée par rapport à la variable radiale : @
@n = @
@r ). Les fonctions
propres correspondantes sont données par :
f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet)
fN
(r; ) = fN
n;m(r; ) = Jn(k0
n;mr)(Acos(n ) + B sin(n )) (Neumann)
où Jn est la fonction de Bessel de premier type d'ordre n, kn;m est son m-
ième zéro et k0
n;m est le m-ième zéro de sa dérivée (ici on dénote les fonctions
propres pour le problème de Dirichlet par f et celles pour le problème de
Neumann par fN). Dans ce cas, on obtient que le spectre SpD( ) du laplacien
sur D, c'est-à-dire l'ensemble de ses valeurs propres, est donné par :
SpD( ) = f : f = fg = fk2
n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet)
SpN
D( ) = f : fN = fNg = fk0
n;m
2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann)
En n, on impose que nos fonctions propres soient normalisées par rapport
à la norme L2 sur D, c'est-à-dire :
R
D F2
da = 1 (à partir de maintenant on
utilise F pour noter les fonctions propres normalisées et f pour les fonctions
propres quelconques).
Sous ces conditions, on s'intéresse à déterminer le taux de croissance de
la norme L1 des fonctions propres normalisées, notée jjF jj1, selon . Il est
vi
important de mentionner que la norme L1 d'une fonction sur un domaine
correspond au maximum de sa valeur absolue sur le domaine. Notons que
dépend de deux paramètres, m et n et que la dépendance entre et la
norme L1 dépendra du rapport entre leurs taux de croissance. L'étude du
comportement de la norme L1 est étroitement liée à l'étude de l'ensemble
E(D) qui est l'ensemble des points d'accumulation de
log(jjF jj1)= log :
Notre principal résultat sera de montrer que
[7=36; 1=4] E(B2) [1=18; 1=4]:
Le mémoire est organisé comme suit. L'introdution et les résultats principaux
sont présentés au chapitre 1. Au chapitre 2, on rappelle quelques faits
biens connus concernant les fonctions propres du laplacien sur le disque et
sur les fonctions de Bessel. Au chapitre 3, on prouve des résultats concernant
la croissance de la norme ponctuelle des fonctions propres. On montre
notamment que, si m=n ! 0, alors pour tout point donné (r; ) du disque,
la valeur de F (r; ) décroit exponentiellement lorsque ! 1. Au chapitre
4, on montre plusieurs résultats sur la croissance de la norme L1. Le probl
ème avec conditions frontières de Neumann est discuté au chapitre 5 et on
présente quelques résultats numériques au chapitre 6. Une brève discussion
et un sommaire de notre travail se trouve au chapitre 7. / The goal of this master's thesis is to explore the properties of the solutions of
the eigenvalue problem for the Laplace operator on a disk as the eigenvalues
go to in nity. More speci cally, we study the growth rate of the pointwise
and the L1 norms of the eigenfunctions.
Let D be the unit disk and @D be its boundary (the unit circle). We
study the solutions of the eigenvalue problem f = f with either Dirichlet
boundary condition (fj@D = 0) or Neumann boundary condition ( @f
@nj@D = 0;
note that for the disk the normal derivative is simply the derivative with
respect to the radial variable: @
@n = @
@r ). The corresponding eigenfunctions
are given by:
f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet)
fN
(r; ) = fN
n;m(r; ) = Jn(k0
n;mr)(Acos(n ) + B sin(n )) (Neumann)
where Jn is the nth order Bessel function of the rst type, kn;m is its mth zero
and k0
n;m is the mth zero of its derivative (here we denote the eigenfunctions for
the Dirichlet problem by f and those for the Neumann problem by fN). The
spectrum of the Laplacian on D, SpD( ), that is the set of its eigenvalues,
is given by:
SpD( ) = f : f = fg = fk2
n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet)
SpN
D( ) = f : fN = fNg = fk0
n;m
2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann)
Finally, we normalize the L2 norm of the eigenfunctions on D, namely: R
D F2
da = 1 (here and further on we use the notation F for the normalized
eigenfunctions and f for arbitrary eigenfunctions).
Under these conditions, we study the growth rate of the L1 norm of
the normalized eigenfunctions, jjF jj1, in relation to . It is important to
mention that the L1 norm of a function on a given domain corresponds to the
iv
maximum of its absolute value on the domain. Note that depends on two
parameters, m and n, and the relation between and the L1 norm depends
on the regime at which m and n change as goes to in nity. Studying the
behavior of the L1 norm is linked to the study of the set E(D) which is the
set of accumulation points of
log(jjF jj1)= log :
One of our main results is that
[7=36; 1=4] E(B2) [1=18; 1=4]:
The thesis is organized as follows. Introduction and main results are
presented in chapter 1. In chapter 2 we review some well-known facts regarding
the eigenfunctions of the Laplacian on the disk and the properties
of the Bessel functions. In chapter 3 we prove results on pointwise growth of
eigenfunctions. In particular, we show that, if m=n ! 0, then, for any xed
point (r; ) on D, the value of F (r; ) decreases exponentially as ! 1.
In chapter 4 we study the growth of the L1 norm. Eigenfunctions of the
Neumann problem are discussed in chapter 5. Some numerical results are
presented in chapter 6. A discussion and a summary of our work could be
found in chapter 7.
|
2 |
Croissance des fonctions propres du laplacien sur un domaine circulaireLavoie, Guillaume 07 1900 (has links)
Ce mémoire a pour but d'étudier les propriétés des solutions à l'équation
aux valeurs propres de l'opérateur de Laplace sur le disque lorsque les
valeurs propres tendent vers l'in ni. En particulier, on s'intéresse au taux
de croissance des normes ponctuelle et L1.
Soit D le disque unitaire et @D sa frontière (le cercle unitaire). On s'inté-
resse aux solutions de l'équation aux valeurs propres f = f avec soit des
conditions frontières de Dirichlet (fj@D = 0), soit des conditions frontières de
Neumann ( @f
@nj@D = 0 ; notons que sur le disque, la dérivée normale est simplement
la dérivée par rapport à la variable radiale : @
@n = @
@r ). Les fonctions
propres correspondantes sont données par :
f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet)
fN
(r; ) = fN
n;m(r; ) = Jn(k0
n;mr)(Acos(n ) + B sin(n )) (Neumann)
où Jn est la fonction de Bessel de premier type d'ordre n, kn;m est son m-
ième zéro et k0
n;m est le m-ième zéro de sa dérivée (ici on dénote les fonctions
propres pour le problème de Dirichlet par f et celles pour le problème de
Neumann par fN). Dans ce cas, on obtient que le spectre SpD( ) du laplacien
sur D, c'est-à-dire l'ensemble de ses valeurs propres, est donné par :
SpD( ) = f : f = fg = fk2
n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet)
SpN
D( ) = f : fN = fNg = fk0
n;m
2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann)
En n, on impose que nos fonctions propres soient normalisées par rapport
à la norme L2 sur D, c'est-à-dire :
R
D F2
da = 1 (à partir de maintenant on
utilise F pour noter les fonctions propres normalisées et f pour les fonctions
propres quelconques).
Sous ces conditions, on s'intéresse à déterminer le taux de croissance de
la norme L1 des fonctions propres normalisées, notée jjF jj1, selon . Il est
vi
important de mentionner que la norme L1 d'une fonction sur un domaine
correspond au maximum de sa valeur absolue sur le domaine. Notons que
dépend de deux paramètres, m et n et que la dépendance entre et la
norme L1 dépendra du rapport entre leurs taux de croissance. L'étude du
comportement de la norme L1 est étroitement liée à l'étude de l'ensemble
E(D) qui est l'ensemble des points d'accumulation de
log(jjF jj1)= log :
Notre principal résultat sera de montrer que
[7=36; 1=4] E(B2) [1=18; 1=4]:
Le mémoire est organisé comme suit. L'introdution et les résultats principaux
sont présentés au chapitre 1. Au chapitre 2, on rappelle quelques faits
biens connus concernant les fonctions propres du laplacien sur le disque et
sur les fonctions de Bessel. Au chapitre 3, on prouve des résultats concernant
la croissance de la norme ponctuelle des fonctions propres. On montre
notamment que, si m=n ! 0, alors pour tout point donné (r; ) du disque,
la valeur de F (r; ) décroit exponentiellement lorsque ! 1. Au chapitre
4, on montre plusieurs résultats sur la croissance de la norme L1. Le probl
ème avec conditions frontières de Neumann est discuté au chapitre 5 et on
présente quelques résultats numériques au chapitre 6. Une brève discussion
et un sommaire de notre travail se trouve au chapitre 7. / The goal of this master's thesis is to explore the properties of the solutions of
the eigenvalue problem for the Laplace operator on a disk as the eigenvalues
go to in nity. More speci cally, we study the growth rate of the pointwise
and the L1 norms of the eigenfunctions.
Let D be the unit disk and @D be its boundary (the unit circle). We
study the solutions of the eigenvalue problem f = f with either Dirichlet
boundary condition (fj@D = 0) or Neumann boundary condition ( @f
@nj@D = 0;
note that for the disk the normal derivative is simply the derivative with
respect to the radial variable: @
@n = @
@r ). The corresponding eigenfunctions
are given by:
f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet)
fN
(r; ) = fN
n;m(r; ) = Jn(k0
n;mr)(Acos(n ) + B sin(n )) (Neumann)
where Jn is the nth order Bessel function of the rst type, kn;m is its mth zero
and k0
n;m is the mth zero of its derivative (here we denote the eigenfunctions for
the Dirichlet problem by f and those for the Neumann problem by fN). The
spectrum of the Laplacian on D, SpD( ), that is the set of its eigenvalues,
is given by:
SpD( ) = f : f = fg = fk2
n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet)
SpN
D( ) = f : fN = fNg = fk0
n;m
2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann)
Finally, we normalize the L2 norm of the eigenfunctions on D, namely: R
D F2
da = 1 (here and further on we use the notation F for the normalized
eigenfunctions and f for arbitrary eigenfunctions).
Under these conditions, we study the growth rate of the L1 norm of
the normalized eigenfunctions, jjF jj1, in relation to . It is important to
mention that the L1 norm of a function on a given domain corresponds to the
iv
maximum of its absolute value on the domain. Note that depends on two
parameters, m and n, and the relation between and the L1 norm depends
on the regime at which m and n change as goes to in nity. Studying the
behavior of the L1 norm is linked to the study of the set E(D) which is the
set of accumulation points of
log(jjF jj1)= log :
One of our main results is that
[7=36; 1=4] E(B2) [1=18; 1=4]:
The thesis is organized as follows. Introduction and main results are
presented in chapter 1. In chapter 2 we review some well-known facts regarding
the eigenfunctions of the Laplacian on the disk and the properties
of the Bessel functions. In chapter 3 we prove results on pointwise growth of
eigenfunctions. In particular, we show that, if m=n ! 0, then, for any xed
point (r; ) on D, the value of F (r; ) decreases exponentially as ! 1.
In chapter 4 we study the growth of the L1 norm. Eigenfunctions of the
Neumann problem are discussed in chapter 5. Some numerical results are
presented in chapter 6. A discussion and a summary of our work could be
found in chapter 7.
|
Page generated in 0.1721 seconds