• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of arbitrarily profiled cylindrical dielectric waveguides using vectored magnetic orthogonal bases

Liu, Han-qiang 06 July 2005 (has links)
The dielectric waveguide component has become a mature industry in these days in making it and understanding how it works. There are many theoretical and numerical methods to solve these waveguide modes. For example, the rigorous vectorial coupled transverse mode integral equation formulation (VCTMIE), finite-difference frequency-domain method (FDFD), vectorial beam propagation method (VBPM) and modal expansion method with simple bases (MEMSB)¡Ketc. With the exception of the MEMSB method and the alike, all these methods work very hard to handle interface boundaries and many require many terms meet the convergence requirements. In this thesis, we propose a rigorous modal expansion method based on a set of orthogonal transverse magnetic bases to analyze arbitrarily profiled 2-D cylindrical dielectric waveguides. First, we expand the mode field solution of a general multi-layered waveguide by linear combination of 1D homogeneous solutions. Magnetic and components are chosen for its continuity property across the material interface. The choice of Magnetic field over electric field also reduces the number of terms and minimizes the Gibb¡¦s phenomenon. Our new vector bases eliminate the numerical difficulty of working with the singular term of the cylindrical differential operators. When compared with the results using simple bases, we further reduce one quarter of terms without loosing any accuracy. Although the process of deriving the formulation of this vector cylindrical basis expansion technique is complex because Bessel functions and their derivatives are involved, the resulting matrix eigenvalue-eigenvector equation is much simpler than that of the simple bases and the new the result is also more accurate. We also extended the analysis to study the 2-D cylindrical dielectric waveguide problem.
2

Croissance des fonctions propres du laplacien sur un domaine circulaire

Lavoie, Guillaume 07 1900 (has links)
Ce mémoire a pour but d'étudier les propriétés des solutions à l'équation aux valeurs propres de l'opérateur de Laplace sur le disque lorsque les valeurs propres tendent vers l'in ni. En particulier, on s'intéresse au taux de croissance des normes ponctuelle et L1. Soit D le disque unitaire et @D sa frontière (le cercle unitaire). On s'inté- resse aux solutions de l'équation aux valeurs propres f = f avec soit des conditions frontières de Dirichlet (fj@D = 0), soit des conditions frontières de Neumann ( @f @nj@D = 0 ; notons que sur le disque, la dérivée normale est simplement la dérivée par rapport à la variable radiale : @ @n = @ @r ). Les fonctions propres correspondantes sont données par : f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet) fN (r; ) = fN n;m(r; ) = Jn(k0 n;mr)(Acos(n ) + B sin(n )) (Neumann) où Jn est la fonction de Bessel de premier type d'ordre n, kn;m est son m- ième zéro et k0 n;m est le m-ième zéro de sa dérivée (ici on dénote les fonctions propres pour le problème de Dirichlet par f et celles pour le problème de Neumann par fN). Dans ce cas, on obtient que le spectre SpD( ) du laplacien sur D, c'est-à-dire l'ensemble de ses valeurs propres, est donné par : SpD( ) = f : f = fg = fk2 n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet) SpN D( ) = f : fN = fNg = fk0 n;m 2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann) En n, on impose que nos fonctions propres soient normalisées par rapport à la norme L2 sur D, c'est-à-dire : R D F2 da = 1 (à partir de maintenant on utilise F pour noter les fonctions propres normalisées et f pour les fonctions propres quelconques). Sous ces conditions, on s'intéresse à déterminer le taux de croissance de la norme L1 des fonctions propres normalisées, notée jjF jj1, selon . Il est vi important de mentionner que la norme L1 d'une fonction sur un domaine correspond au maximum de sa valeur absolue sur le domaine. Notons que dépend de deux paramètres, m et n et que la dépendance entre et la norme L1 dépendra du rapport entre leurs taux de croissance. L'étude du comportement de la norme L1 est étroitement liée à l'étude de l'ensemble E(D) qui est l'ensemble des points d'accumulation de log(jjF jj1)= log : Notre principal résultat sera de montrer que [7=36; 1=4] E(B2) [1=18; 1=4]: Le mémoire est organisé comme suit. L'introdution et les résultats principaux sont présentés au chapitre 1. Au chapitre 2, on rappelle quelques faits biens connus concernant les fonctions propres du laplacien sur le disque et sur les fonctions de Bessel. Au chapitre 3, on prouve des résultats concernant la croissance de la norme ponctuelle des fonctions propres. On montre notamment que, si m=n ! 0, alors pour tout point donné (r; ) du disque, la valeur de F (r; ) décroit exponentiellement lorsque ! 1. Au chapitre 4, on montre plusieurs résultats sur la croissance de la norme L1. Le probl ème avec conditions frontières de Neumann est discuté au chapitre 5 et on présente quelques résultats numériques au chapitre 6. Une brève discussion et un sommaire de notre travail se trouve au chapitre 7. / The goal of this master's thesis is to explore the properties of the solutions of the eigenvalue problem for the Laplace operator on a disk as the eigenvalues go to in nity. More speci cally, we study the growth rate of the pointwise and the L1 norms of the eigenfunctions. Let D be the unit disk and @D be its boundary (the unit circle). We study the solutions of the eigenvalue problem f = f with either Dirichlet boundary condition (fj@D = 0) or Neumann boundary condition ( @f @nj@D = 0; note that for the disk the normal derivative is simply the derivative with respect to the radial variable: @ @n = @ @r ). The corresponding eigenfunctions are given by: f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet) fN (r; ) = fN n;m(r; ) = Jn(k0 n;mr)(Acos(n ) + B sin(n )) (Neumann) where Jn is the nth order Bessel function of the rst type, kn;m is its mth zero and k0 n;m is the mth zero of its derivative (here we denote the eigenfunctions for the Dirichlet problem by f and those for the Neumann problem by fN). The spectrum of the Laplacian on D, SpD( ), that is the set of its eigenvalues, is given by: SpD( ) = f : f = fg = fk2 n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet) SpN D( ) = f : fN = fNg = fk0 n;m 2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann) Finally, we normalize the L2 norm of the eigenfunctions on D, namely: R D F2 da = 1 (here and further on we use the notation F for the normalized eigenfunctions and f for arbitrary eigenfunctions). Under these conditions, we study the growth rate of the L1 norm of the normalized eigenfunctions, jjF jj1, in relation to . It is important to mention that the L1 norm of a function on a given domain corresponds to the iv maximum of its absolute value on the domain. Note that depends on two parameters, m and n, and the relation between and the L1 norm depends on the regime at which m and n change as goes to in nity. Studying the behavior of the L1 norm is linked to the study of the set E(D) which is the set of accumulation points of log(jjF jj1)= log : One of our main results is that [7=36; 1=4] E(B2) [1=18; 1=4]: The thesis is organized as follows. Introduction and main results are presented in chapter 1. In chapter 2 we review some well-known facts regarding the eigenfunctions of the Laplacian on the disk and the properties of the Bessel functions. In chapter 3 we prove results on pointwise growth of eigenfunctions. In particular, we show that, if m=n ! 0, then, for any xed point (r; ) on D, the value of F (r; ) decreases exponentially as ! 1. In chapter 4 we study the growth of the L1 norm. Eigenfunctions of the Neumann problem are discussed in chapter 5. Some numerical results are presented in chapter 6. A discussion and a summary of our work could be found in chapter 7.
3

Amos-type bounds for modified Bessel function ratios.

Hornik, Kurt, Grün, Bettina January 2013 (has links) (PDF)
(please take a look at the pdf)
4

New results on the degree of ill-posedness for integration operators with weights

Hofmann, Bernd, von Wolfersdorf, Lothar 16 May 2008 (has links) (PDF)
We extend our results on the degree of ill-posedness for linear integration opera- tors A with weights mapping in the Hilbert space L^2(0,1), which were published in the journal 'Inverse Problems' in 2005 ([5]). Now we can prove that the degree one also holds for a family of exponential weight functions. In this context, we empha- size that for integration operators with outer weights the use of the operator AA^* is more appropriate for the analysis of eigenvalue problems and the corresponding asymptotics of singular values than the former use of A^*A.
5

Croissance des fonctions propres du laplacien sur un domaine circulaire

Lavoie, Guillaume 07 1900 (has links)
Ce mémoire a pour but d'étudier les propriétés des solutions à l'équation aux valeurs propres de l'opérateur de Laplace sur le disque lorsque les valeurs propres tendent vers l'in ni. En particulier, on s'intéresse au taux de croissance des normes ponctuelle et L1. Soit D le disque unitaire et @D sa frontière (le cercle unitaire). On s'inté- resse aux solutions de l'équation aux valeurs propres f = f avec soit des conditions frontières de Dirichlet (fj@D = 0), soit des conditions frontières de Neumann ( @f @nj@D = 0 ; notons que sur le disque, la dérivée normale est simplement la dérivée par rapport à la variable radiale : @ @n = @ @r ). Les fonctions propres correspondantes sont données par : f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet) fN (r; ) = fN n;m(r; ) = Jn(k0 n;mr)(Acos(n ) + B sin(n )) (Neumann) où Jn est la fonction de Bessel de premier type d'ordre n, kn;m est son m- ième zéro et k0 n;m est le m-ième zéro de sa dérivée (ici on dénote les fonctions propres pour le problème de Dirichlet par f et celles pour le problème de Neumann par fN). Dans ce cas, on obtient que le spectre SpD( ) du laplacien sur D, c'est-à-dire l'ensemble de ses valeurs propres, est donné par : SpD( ) = f : f = fg = fk2 n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet) SpN D( ) = f : fN = fNg = fk0 n;m 2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann) En n, on impose que nos fonctions propres soient normalisées par rapport à la norme L2 sur D, c'est-à-dire : R D F2 da = 1 (à partir de maintenant on utilise F pour noter les fonctions propres normalisées et f pour les fonctions propres quelconques). Sous ces conditions, on s'intéresse à déterminer le taux de croissance de la norme L1 des fonctions propres normalisées, notée jjF jj1, selon . Il est vi important de mentionner que la norme L1 d'une fonction sur un domaine correspond au maximum de sa valeur absolue sur le domaine. Notons que dépend de deux paramètres, m et n et que la dépendance entre et la norme L1 dépendra du rapport entre leurs taux de croissance. L'étude du comportement de la norme L1 est étroitement liée à l'étude de l'ensemble E(D) qui est l'ensemble des points d'accumulation de log(jjF jj1)= log : Notre principal résultat sera de montrer que [7=36; 1=4] E(B2) [1=18; 1=4]: Le mémoire est organisé comme suit. L'introdution et les résultats principaux sont présentés au chapitre 1. Au chapitre 2, on rappelle quelques faits biens connus concernant les fonctions propres du laplacien sur le disque et sur les fonctions de Bessel. Au chapitre 3, on prouve des résultats concernant la croissance de la norme ponctuelle des fonctions propres. On montre notamment que, si m=n ! 0, alors pour tout point donné (r; ) du disque, la valeur de F (r; ) décroit exponentiellement lorsque ! 1. Au chapitre 4, on montre plusieurs résultats sur la croissance de la norme L1. Le probl ème avec conditions frontières de Neumann est discuté au chapitre 5 et on présente quelques résultats numériques au chapitre 6. Une brève discussion et un sommaire de notre travail se trouve au chapitre 7. / The goal of this master's thesis is to explore the properties of the solutions of the eigenvalue problem for the Laplace operator on a disk as the eigenvalues go to in nity. More speci cally, we study the growth rate of the pointwise and the L1 norms of the eigenfunctions. Let D be the unit disk and @D be its boundary (the unit circle). We study the solutions of the eigenvalue problem f = f with either Dirichlet boundary condition (fj@D = 0) or Neumann boundary condition ( @f @nj@D = 0; note that for the disk the normal derivative is simply the derivative with respect to the radial variable: @ @n = @ @r ). The corresponding eigenfunctions are given by: f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet) fN (r; ) = fN n;m(r; ) = Jn(k0 n;mr)(Acos(n ) + B sin(n )) (Neumann) where Jn is the nth order Bessel function of the rst type, kn;m is its mth zero and k0 n;m is the mth zero of its derivative (here we denote the eigenfunctions for the Dirichlet problem by f and those for the Neumann problem by fN). The spectrum of the Laplacian on D, SpD( ), that is the set of its eigenvalues, is given by: SpD( ) = f : f = fg = fk2 n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet) SpN D( ) = f : fN = fNg = fk0 n;m 2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann) Finally, we normalize the L2 norm of the eigenfunctions on D, namely: R D F2 da = 1 (here and further on we use the notation F for the normalized eigenfunctions and f for arbitrary eigenfunctions). Under these conditions, we study the growth rate of the L1 norm of the normalized eigenfunctions, jjF jj1, in relation to . It is important to mention that the L1 norm of a function on a given domain corresponds to the iv maximum of its absolute value on the domain. Note that depends on two parameters, m and n, and the relation between and the L1 norm depends on the regime at which m and n change as goes to in nity. Studying the behavior of the L1 norm is linked to the study of the set E(D) which is the set of accumulation points of log(jjF jj1)= log : One of our main results is that [7=36; 1=4] E(B2) [1=18; 1=4]: The thesis is organized as follows. Introduction and main results are presented in chapter 1. In chapter 2 we review some well-known facts regarding the eigenfunctions of the Laplacian on the disk and the properties of the Bessel functions. In chapter 3 we prove results on pointwise growth of eigenfunctions. In particular, we show that, if m=n ! 0, then, for any xed point (r; ) on D, the value of F (r; ) decreases exponentially as ! 1. In chapter 4 we study the growth of the L1 norm. Eigenfunctions of the Neumann problem are discussed in chapter 5. Some numerical results are presented in chapter 6. A discussion and a summary of our work could be found in chapter 7.
6

On Maximum Likelihood Estimation of the Concentration Parameter of von Mises-Fisher Distributions

Hornik, Kurt, Grün, Bettina 10 1900 (has links) (PDF)
Maximum likelihood estimation of the concentration parameter of von Mises-Fisher distributions involves inverting the ratio R_nu = I_{nu+1} / I_nu of modified Bessel functions. Computational issues when using approximative or iterative methods were discussed in Tanabe et al. (Comput Stat 22(1):145-157, 2007) and Sra (Comput Stat 27(1):177-190, 2012). In this paper we use Amos-type bounds for R_nu to deduce sharper bounds for the inverse function, determine the approximation error of these bounds, and use these to propose a new approximation for which the error tends to zero when the inverse of R is evaluated at values tending to 1 (from the left). We show that previously introduced rational bounds for R_nu which are invertible using quadratic equations cannot be used to improve these bounds. / Series: Research Report Series / Department of Statistics and Mathematics
7

movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions

Hornik, Kurt, Grün, Bettina 07 1900 (has links) (PDF)
Finite mixtures of von Mises-Fisher distributions allow to apply model-based clustering methods to data which is of standardized length, i.e., all data points lie on the unit sphere. The R package movMF contains functionality to draw samples from finite mixtures of von Mises-Fisher distributions and to fit these models using the expectation-maximization algorithm for maximum likelihood estimation. Special features are the possibility to use sparse matrix representations for the input data, different variants of the expectationmaximization algorithm, different methods for determining the concentration parameters in the M-step and to impose constraints on the concentration parameters over the components. In this paper we describe the main fitting function of the package and illustrate its application. In addition we compare the clustering performance of finite mixtures of von Mises-Fisher distributions to spherical k-means. We also discuss the resolution of several numerical issues which occur for estimating the concentration parameters and for determining the normalizing constant of the von Mises-Fisher distribution. (authors' abstract)
8

Local Langlands Correpondence for the twisted exterior and symmetric square epsilon-factors of GL(N)

Dongming She (8782541) 02 May 2020 (has links)
In this paper, we prove the equality of the local arithmetic and analytic epsilon- and L-factors attached to the twisted exterior and symmetric square representations of GL(N). We will construct the twisted symmetric square local analytic gamma- and L-factor of GL(N) by applying Langlands-Shahidi method to odd GSpin groups. Then we reduce the problem to the stablity of local coefficients, and eventually prove the analytic stabitliy in this case by some analysis on the asymptotic behavior of certain partial Bessel functions.
9

Vliv optických prvků na vyzařovaný laserový svazek / Effect of optical elements on transmitted laser beam

Poliak, Juraj January 2011 (has links)
Diplomová práca pojednáva o skalárnej teórii difrakcie a zavádza dôležité riešenie vlnovej rovnice a to elipticky symetrický Gaussov zväzok. V praktickej časti bude popísané modelovanie difrakcie na kruhovom otvore dvoma rôznymi prístupmi. Model bude experimentálne overený experimentom. V záverečnej časti bude kriticky pojednané o výsledkoch experimentu a simulácie.
10

Sumiranje redova sa specijalnim funkcijama

Vidanović Mirjana 11 July 2003 (has links)
<p>Disertacija se bavi sumiranjem redova sa specijalnim funkcijama. Ovi redovi se posredstvom trigonometrijskih redova svode na redove sa Riemannovom zeta funkci&shy;jom i srodnim funkcijama. U određenim slučajevima sumacione formule se mogu dovesti na takozvani zatvoreni oblik, &scaron;to znači da se beskonačni redovi predstavljaju konačnim sumama. Predloženi metodi sumacije omogućavaju ubrzanje konvergencije, a mogu se primeniti i kod nekih graničnih problema matematičke fizike. Sumacione formule uključuju kao specijalne slučajeve neke formule poznate iz literature, ali i nove sume, s obzirom da su op&scaron;teg karaktera. Pomoću ovih formula sumirani su i redovi sa integralima trigonometrijskih i specijalnih funkcija.</p> / <p>This dissertation deals with the summation of series over special functions. Through<br />trigonometric series these series are reduced to series in terms of Riemann zeta and<br />related functions. They can be brought in closed form in some cases, i.e. infinite<br />series are expressed as finite sums. Closed form formulas make it possible to accele&shy;<br />rate the convergence of some series, and have many applications in various scientific<br />fields as well. For example, closed form solutions of the boundary value problem in<br />mathematical physics can be obtained. Summation formulas include particular cases<br />known from the literature, but because of their general character one can come to<br />new sums. By means of these formul&aacute;is the sums of series over integrals containing<br />trigonometric or special functions have been found.</p>

Page generated in 0.1184 seconds