• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanismes moléculaires de la réplication préférentielle du VIH-1 dans les cellules à polarisation Th1Th17 versus Th1 : rôle de PPARG dans la régulation négative de la réplication virale

Bernier, Annie 11 1900 (has links)
Les cellules T CD4+ humaines sont hétérogènes du point de vue de la permissivité à l’infection par le virus de l’immunodéficience humaine de type 1 (VIH-1). Notre laboratoire a préalablement démontré que les cellules Th1 à phénotype CXCR3+CCR6- sont relativement résistantes à l’infection par le VIH-1 alors que les cellules Th1Th17 à phénotype CXCR3+CCR6+ y sont hautement permissives. La réplication du VIH dépend de plusieurs facteurs cellulaires de restriction ou de permissivité agissant à différentes étapes du cycle viral. Toutefois, malgré plusieurs avancées, la compréhension des voies de signalisation cellulaire impliquées dans la régulation de la réplication du VIH est encore limitée. L’objectif majeur de ce projet de maîtrise est de caractériser les mécanismes moléculaires de la permissivité et de la résistance au VIH respectivement dans les cellules Th1Th17 et Th1. Ce mémoire est divisé en quatre parties qui visent: (i) l’identification des voies canoniques et des fonctions biologiques différemment régulées dans les cellules Th1Th17 versus Th1 par l’analyse de leur transcriptome au niveau du génome entier; (ii) la validation de l’expression différentielle des gènes d’intérêt identifiés par biopuces au niveau des transcrits et des protéines; (iii) la caractérisation du rôle fonctionnel de certains de ces facteurs (i.e., PPARG, AhR) sur la réplication du VIH dans les cellules Th1Th17 versus Th1; et (iv) l’identification du niveau auquel ces facteurs interfèrent avec le cycle de réplication du VIH. Nos résultats d’analyse du transcriptome du génome entier par Gene Set Enrichment Analysis et Ingenuity Pathway Analysis indiquent que les cellules à profil Th1Th17 sont plus susceptibles à l’activation cellulaire et à l’apoptose, favorisent plus l’inflammation et expriment moins fortement les gènes liés à la dégradation protéosomale comparé aux cellules à profil Th1. Ces différences dans la régulation de diverses voies et fonctions biologiques permettent en partie d’expliquer la susceptibilité à l’infection par le VIH dans ces cellules. Nous avons ensuite confirmé l’expression différentielle de certains gènes d’intérêt dans les cellules Th1Th17 (CXCR6, PPARG, ARNTL, CTSH, PTPN13, MAP3K4) versus Th1 (SERPINB6, PTK2) au niveau de l’ARNm et des protéines. Finalement, nous avons démontré le rôle des facteurs de transcription PPARG et AhR dans la régulation de la réplication du VIH. L’activation de la voie PPARG par la rosiglitazone induit la diminution importante de la réplication du VIH dans les cellules T CD4+, alors que l’activation de la voie AhR par les ligands exogènes TCDD et FICZ augmente de façon significative la réplication virale. Nous proposons que la voie PPARG agit comme un régulateur négatif de la réplication du VIH dans ces cellules, en interférant avec la polarisation Th17 et probablement en inhibant l’activité transcriptionnelle du facteur NF-kB. Les rôles des formes nucléaires versus cytoplasmiques du récepteur Ahr semblent être diamétralement opposés, dans la mesure où l’interférence ARN contre AhR s’associe également à l’augmentation de la réplication virale. Il est ainsi possible que la forme cytoplasmique d’AhR, connue par son activité E3 ligase, participe à la dégradation protéosomale des particules virales. Le mécanisme par lequel le AhR nucléaire versus cytoplasmique interfère avec la réplication virale est en cours d’étude au laboratoire. Cette étude représente la première caractérisation de l’expression différentielle de gènes au niveau du génome entier de sous-populations T CD4+ permissives versus résistantes à l’infection par le VIH. Nos résultats identifient de nouvelles cibles moléculaires pour de nouvelles stratégies thérapeutiques visant à limiter la réplication du VIH dans les lymphocytes T CD4+ primaires. / Human CD4+ T cells are heterogeneous in terms of permissiveness to infection by the human immunodeficiency virus type 1 (HIV-1). Our laboratory previously demonstrated that Th1 cells (CXCR3+CCR6- phenotype) are relatively resistant to infection, whereas Th1Th17 cells (CXCR3+CCR6+ phenotype) are highly permissive to HIV-1. HIV replication depends on several cellular restriction or permissiveness factors acting at different stages of the viral life cycle. However, despite several advances, our knowledge on signaling pathways involved in HIV replication is still limited. The main objective of this MSc degree project is to characterize the molecular mechanisms of permissiveness and resistance to HIV in Th1Th17 and Th1 cells respectively. This thesis is divided into four parts, aiming at : (i) the identification of canonical pathways and biological functions differentially regulated in Th1Th17 vs Th1 cells through the analysis of their whole genome transcriptome; (ii) the validation of differential expression of relevant genes identified by microarrays at mRNA and protein levels; (iii) the characterization of the functional role of some of these factors (i.e. PPARG, AhR) on HIV replication in Th1Th17 versus Th1 cells; and (iv) the identification of the level at which these factors interfere with the HIV replication cycle. Our analysis of the large sets of microarray data by Gene Set Enrichment Analysis and Ingenuity Pathway Analysis indicate that Th1Th17 compared to Th1 cells are more susceptible to cell activation and apoptosis, promote superior inflammation and express at low levels genes related to the proteosomal degradation. These differences in the regulation of various biological functions and pathways can partly explain the susceptibility to HIV infection in these cells. We then confirmed the differential expression of some genes of interest in Th1Th17 (CXCR6, PPARG, ARNTL, CTSH, PTPN13, MAP3K4) versus Th1 (SERPINB6, PTK2) cells at mRNA and protein levels. Finally, we demonstrated the role of the transcription factors PPARG and AhR in the regulation of HIV replication. The activation of PPARG by rosiglitazone induces an important decrease in HIV replication in CD4+ T cells, while AhR activation by its exogenous ligands TCDD and FICZ promotes viral replication. We propose that the PPARG pathway acts as a negative regulator of HIV replication in these cells by interfering with Th17 polarization and probably by inhibiting the transcriptional activity of NF-kB. The role of nuclear versus cytoplasmic AhR appears diametrically opposed, since RNA interference against AhR is also associated with a significant increase in HIV replication. It is thus possible that the cytoplasmic form of AhR, known for its E3 ubiquitine ligase activity, is involved in proteasomal degradation of the viral particles. The mechanism by which the nuclear versus cytoplasmic form of AhR interferes with viral replication is being studied in the laboratory. This study represents the first characterization of the differential expression of genes in the entire genome of CD4+ T subpopulations permissive (Th1Th17) versus resistant (Th1) to infection by HIV. Ours results identify new molecular targets for therapeutic strategies to limit HIV replication in primary CD4+ T lymphocytes.
2

Mécanismes moléculaires de la réplication préférentielle du VIH-1 dans les cellules à polarisation Th1Th17 versus Th1 : rôle de PPARG dans la régulation négative de la réplication virale

Bernier, Annie 11 1900 (has links)
Les cellules T CD4+ humaines sont hétérogènes du point de vue de la permissivité à l’infection par le virus de l’immunodéficience humaine de type 1 (VIH-1). Notre laboratoire a préalablement démontré que les cellules Th1 à phénotype CXCR3+CCR6- sont relativement résistantes à l’infection par le VIH-1 alors que les cellules Th1Th17 à phénotype CXCR3+CCR6+ y sont hautement permissives. La réplication du VIH dépend de plusieurs facteurs cellulaires de restriction ou de permissivité agissant à différentes étapes du cycle viral. Toutefois, malgré plusieurs avancées, la compréhension des voies de signalisation cellulaire impliquées dans la régulation de la réplication du VIH est encore limitée. L’objectif majeur de ce projet de maîtrise est de caractériser les mécanismes moléculaires de la permissivité et de la résistance au VIH respectivement dans les cellules Th1Th17 et Th1. Ce mémoire est divisé en quatre parties qui visent: (i) l’identification des voies canoniques et des fonctions biologiques différemment régulées dans les cellules Th1Th17 versus Th1 par l’analyse de leur transcriptome au niveau du génome entier; (ii) la validation de l’expression différentielle des gènes d’intérêt identifiés par biopuces au niveau des transcrits et des protéines; (iii) la caractérisation du rôle fonctionnel de certains de ces facteurs (i.e., PPARG, AhR) sur la réplication du VIH dans les cellules Th1Th17 versus Th1; et (iv) l’identification du niveau auquel ces facteurs interfèrent avec le cycle de réplication du VIH. Nos résultats d’analyse du transcriptome du génome entier par Gene Set Enrichment Analysis et Ingenuity Pathway Analysis indiquent que les cellules à profil Th1Th17 sont plus susceptibles à l’activation cellulaire et à l’apoptose, favorisent plus l’inflammation et expriment moins fortement les gènes liés à la dégradation protéosomale comparé aux cellules à profil Th1. Ces différences dans la régulation de diverses voies et fonctions biologiques permettent en partie d’expliquer la susceptibilité à l’infection par le VIH dans ces cellules. Nous avons ensuite confirmé l’expression différentielle de certains gènes d’intérêt dans les cellules Th1Th17 (CXCR6, PPARG, ARNTL, CTSH, PTPN13, MAP3K4) versus Th1 (SERPINB6, PTK2) au niveau de l’ARNm et des protéines. Finalement, nous avons démontré le rôle des facteurs de transcription PPARG et AhR dans la régulation de la réplication du VIH. L’activation de la voie PPARG par la rosiglitazone induit la diminution importante de la réplication du VIH dans les cellules T CD4+, alors que l’activation de la voie AhR par les ligands exogènes TCDD et FICZ augmente de façon significative la réplication virale. Nous proposons que la voie PPARG agit comme un régulateur négatif de la réplication du VIH dans ces cellules, en interférant avec la polarisation Th17 et probablement en inhibant l’activité transcriptionnelle du facteur NF-kB. Les rôles des formes nucléaires versus cytoplasmiques du récepteur Ahr semblent être diamétralement opposés, dans la mesure où l’interférence ARN contre AhR s’associe également à l’augmentation de la réplication virale. Il est ainsi possible que la forme cytoplasmique d’AhR, connue par son activité E3 ligase, participe à la dégradation protéosomale des particules virales. Le mécanisme par lequel le AhR nucléaire versus cytoplasmique interfère avec la réplication virale est en cours d’étude au laboratoire. Cette étude représente la première caractérisation de l’expression différentielle de gènes au niveau du génome entier de sous-populations T CD4+ permissives versus résistantes à l’infection par le VIH. Nos résultats identifient de nouvelles cibles moléculaires pour de nouvelles stratégies thérapeutiques visant à limiter la réplication du VIH dans les lymphocytes T CD4+ primaires. / Human CD4+ T cells are heterogeneous in terms of permissiveness to infection by the human immunodeficiency virus type 1 (HIV-1). Our laboratory previously demonstrated that Th1 cells (CXCR3+CCR6- phenotype) are relatively resistant to infection, whereas Th1Th17 cells (CXCR3+CCR6+ phenotype) are highly permissive to HIV-1. HIV replication depends on several cellular restriction or permissiveness factors acting at different stages of the viral life cycle. However, despite several advances, our knowledge on signaling pathways involved in HIV replication is still limited. The main objective of this MSc degree project is to characterize the molecular mechanisms of permissiveness and resistance to HIV in Th1Th17 and Th1 cells respectively. This thesis is divided into four parts, aiming at : (i) the identification of canonical pathways and biological functions differentially regulated in Th1Th17 vs Th1 cells through the analysis of their whole genome transcriptome; (ii) the validation of differential expression of relevant genes identified by microarrays at mRNA and protein levels; (iii) the characterization of the functional role of some of these factors (i.e. PPARG, AhR) on HIV replication in Th1Th17 versus Th1 cells; and (iv) the identification of the level at which these factors interfere with the HIV replication cycle. Our analysis of the large sets of microarray data by Gene Set Enrichment Analysis and Ingenuity Pathway Analysis indicate that Th1Th17 compared to Th1 cells are more susceptible to cell activation and apoptosis, promote superior inflammation and express at low levels genes related to the proteosomal degradation. These differences in the regulation of various biological functions and pathways can partly explain the susceptibility to HIV infection in these cells. We then confirmed the differential expression of some genes of interest in Th1Th17 (CXCR6, PPARG, ARNTL, CTSH, PTPN13, MAP3K4) versus Th1 (SERPINB6, PTK2) cells at mRNA and protein levels. Finally, we demonstrated the role of the transcription factors PPARG and AhR in the regulation of HIV replication. The activation of PPARG by rosiglitazone induces an important decrease in HIV replication in CD4+ T cells, while AhR activation by its exogenous ligands TCDD and FICZ promotes viral replication. We propose that the PPARG pathway acts as a negative regulator of HIV replication in these cells by interfering with Th17 polarization and probably by inhibiting the transcriptional activity of NF-kB. The role of nuclear versus cytoplasmic AhR appears diametrically opposed, since RNA interference against AhR is also associated with a significant increase in HIV replication. It is thus possible that the cytoplasmic form of AhR, known for its E3 ubiquitine ligase activity, is involved in proteasomal degradation of the viral particles. The mechanism by which the nuclear versus cytoplasmic form of AhR interferes with viral replication is being studied in the laboratory. This study represents the first characterization of the differential expression of genes in the entire genome of CD4+ T subpopulations permissive (Th1Th17) versus resistant (Th1) to infection by HIV. Ours results identify new molecular targets for therapeutic strategies to limit HIV replication in primary CD4+ T lymphocytes.
3

Molecular characterization of Th17 lymphocytes and monocyte-derived dendritic cells in the context of HIV-1 infection

Wacleche, Vanessa S. 12 1900 (has links)
Le virus de l’immunodéficience humaine de type 1 (VIH-1) altère les fonctions du système immunitaire pour promouvoir sa persistance. Les composantes de l’immunité ciblées par le VIH-1 incluent les lymphocytes Th17 et les cellules dendritiques dérivées des monocytes (CDDMs). Deux sous-populations de lymphocytes Th17, nommées Th17 et Th1Th17, ont précédemment été décrites avec des propriétés transcriptionnelles et des spécificités antigéniques distinctes. Les cellules Th17 et Th1Th17 sont hautement permissives à l’infection par le VIH et leur fréquence est diminuée chez les sujets chroniquement infectés sous trithérapie antirétrovirale. Toutefois, seulement une fraction des lymphocytes Th17 est infectée par le VIH, indiquant l’existence de Th17 résistants à la réplication virale. Également, il est connu que l’infection à VIH induit une altération de la fréquence des monocytes reflétée par l’expansion de la population monocytaire exprimant le récepteur Fcγ de type III/CD16. Les monocytes sont des précurseurs de cellules dendritiques et une altération de ratio entre les monocytes CD16+ et CD16- pourrait avoir des conséquences délétères sur la qualité des réponses immunitaires. Le rôle fonctionnel des CDDM exprimant ou non CD16 dans le contexte de la pathogénèse à VIH-1 demeure inconnu. Ce projet de thèse est divisé en 2 parties: 1) l’étude de l’hétérogénéité des cellules Th17 et 2) la caractérisation approfondie des CDDM CD16+ et CD16- dans le contexte d’homéostasie et de la pathogénèse de l’infection à VIH. Dans la première partie, nous avons fonctionnellement caractérisé deux nouvelles sous-populations de lymphocytes Th17 avec une expression différentielle des récepteurs de chimiokines CXCR3 et CCR4 : nommés CCR6+DN et CCR6+DP, exprimant toutes les deux CCR6, marqueur de lymphocytes Th17. Nous avons démontré que les cellules CCR6+DN et CCR6+DP partagent des caractéristiques biologiques communes avec les cellules Th17 et Th1Th17 incluant la permissivité au VIH. Nos résultats indiquent que les cellules CCR6+DN représentent un stade précoce de différentiation des lymphocytes Th17 et expriment des marqueurs de cellules T folliculaires. De plus, comparativement aux sous-populations Th17, Th1Th17 et CCR6+DP, la fréquence et le compte des CCR6+DN sont préservés au sein des sujets chroniquement infectés sous thérapie antirétrovirale. Nous proposons un modèle dans lequel les cellules CCR6+DN représentent des lymphocytes Th17 résistantes à l’effet cytopatique du virus qui contribuent à la persistance virale par leur capacité de porter un virus compétent en matière de réplication. Dans la deuxième partie, nos résultats révèlent que les CDDMs CD16+ et CD16- représentent deux populations uniques avec des propriétés transcriptionelles et fonctionnelles distinctes. Les CDDMs CD16- détiennent un potentiel immunogène supérieur tandis que les CDDMs CD16+ ont une meilleure capacité de transmettre le virus aux cellules T CD4+ au repos. Également, nous confirmons l’effet néfaste du VIH sur les fonctions immunologiques des cellules DC à stimuler la prolifération et la polarisation des cellules Th17 spécifiques à C. albicans et à S. aureus. En conclusion, les résultats inclus dans cette thèse fournissent une compréhension détaillée sur l’hétérogénéité présente au sein des lymphocytes Th17 et des CDDMs et révèlent de nouveaux déterminants moléculaires de l’immunité exploités par le VIH au profit de sa persistance. / The ultimate aim of immunity is to restrict the emergence of exogenous pathogens while providing immune tolerance to self-antigens. The human immunodeficiency virus type 1 (HIV-1) disrupts the functions of the immune system to promote its own dissemination and persistence. The components of the host immunity targeted by HIV-1 include the Th17 lineage and the monocytes. The Th17 lineage was previously reported to include two different populations referred to as the Th17 and Th1Th17 cells exhibiting different transcriptional profiles and antigenic specificities. Both Th17 and Th1Th17 cells are permissive to HIV and their frequency is reduced in the blood and gut mucosa of chronically HIV-infected subjects. Nevertheless, HIV-1 infects only a fraction of the Th17 pool, suggesting the existence of Th17 cells resistant to HIV. In addition, it well documented that HIV-1 infection alters the pool of peripheral blood monocytes and induces the expansion of a monocytic population expressing the Fcγ receptor III/CD16. Monocytes are precursors for dendritic cells (DCs) and an altered CD16+/CD16- monocyte ratio may have deleterious consequences on the quality of immune responses. The functional features of CD16+ versus CD16- monocyte-derived DCs (MDDCs) in the context of HIV infection remain to be elucidated. This thesis is divided in two parts: 1) the study of Th17 cell heterogeneity and 2) the in depth characterization of CD16+ and CD16- monocytes-derived DCs (MDDCs) at homeostasis and during HIV-1 infection. In the first part, we have identified and functionally characterized two new previously uncharacterized subsets of CCR6+ T-cells with differential expression of CXCR3 and CCR4, double negative CCR4-CXCR3- (CCR6+DN) and double positive CCR4+CXCR3+ (CCR6+DP) subsets. We demonstrated CCR6+DN and CCR6+DP share cytokine production, antigenic specificity, lineage plasticity and HIV permissiveness with the previously characterized Th17 (CCR6+CCR4+CXCR3-) and Th1Th17 (CCR6+CCR4-CXCR3+) subsets. Among these four Th17 subsets, CCR6+DN cells were found to represent an early stage of Th17 differentiation and expressed features of T follicular helper T-cells. Moreover, in contrast to Th17, Th1Th17 and CCR6+DP subsets, the frequency and counts of CCR6+DN cells was preserved in chronically HIV-infected subjects under antiretroviral treatments compared to uninfected controls. Our results suggest that CCR6+DN represent long-lived Th17 cells contributing to HIV persistence by carrying replication-competent virus. In the second part, our results reveal that CD16+ and CD16- MDDCs represent two distinct populations with unique transcriptional programs and immunological functions. CD16- MDDCs displayed a superior immunogenic potential, whereas CD16+ MDDCs exhibited a higher capacity to induce HIV replication in resting CD4+ T-cells. Also, we confirmed the negative effect of HIV on DCs immunogenic function involving the stimulation of T-cell proliferation and Th17 polarization in response to pathogens such as C. albicans and S. aureus. Overall, in this thesis we provide a better understanding on Th17 and MDDC heterogeneity and reveal new molecular determinants of pathogenicity in immune cells that are exploited by HIV-1 to insure its persistence in the infected host.

Page generated in 0.0481 seconds