• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 124
  • 70
  • 34
  • 24
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 14
  • 12
  • 11
  • Tagged with
  • 908
  • 875
  • 195
  • 112
  • 100
  • 95
  • 76
  • 75
  • 71
  • 71
  • 70
  • 69
  • 65
  • 58
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Functional characterization of an Arabidopsis anther-specific gene encoding a dihydrolavonol 4-reductase-like protein

Tang, Lee-kwan., 鄧利軍. January 2009 (has links)
published_or_final_version / Biological Sciences / Master / Master of Philosophy
72

A study of putative plant phytases in Arabidopsis thaliana

陳錦河, Chan, Kam-ho. January 2008 (has links)
published_or_final_version / abstract / Biological Sciences / Master / Master of Philosophy
73

Na'+ transport and Ca'2'+ signalling in higher plant salt tolerance

Elphick, Carmen Heather January 2000 (has links)
No description available.
74

Quenching of chlorophyll fluorescence in plant light-harvesting complexes

Wentworth, Mark January 2000 (has links)
No description available.
75

Molecular characterisation of the POLARIS locus of Arabidopsis

Casson, Stuart Anthony January 2000 (has links)
This study is concerned with the analysis of the AtEMl0l promoter trap line of Arabidopsis thaliana. AtEMl0l seedlings show GUS expression in the tips of both primary and lateral roots, and more weakly in the hypocotyl and cotyledons. GUS activity in mature plants is found variably in both rosette and cauline leaves, stem nodes and also siliques but not other floral organs. Active auxins rapidly upregulate whilst cytokinins downregulate GUS transcript levels. AtEMl0l roots are shorter than those of the wild-type, a phenotype which is putatively linked to elevated ethylene levels. AtEMl0l roots were also found to be hypersensitive to exogenous cytokinins. Root patterning is not affected, but cells distal to the elongation zone are shorter in the AtEMl0l line than the wild-type. The T-DNA in line AtEMl0l was found to have inserted in a small, low abundance gene named POLARIS, which encodes a putative 36 amino acid polypeptide, which does not share homology to any known genes. POLARIS shows unusual genome organisation, with its 5' end overlapping with the 3' end of an upstream gene. Upstream sequence, embedded within the upstream gene, when fused to GUS were able to direct expression in root tips whilst a longer fragment mimics the GUS expression of the AtEMl0l line. Retransformation of the AtEMl0l line with a wild-type allele of POLARIS was able to complement the mutant phenotype indicating that the T-DNA insertion into POLARIS is responsible for the AtEMlOl phenotype. Overexpression of POLRIS resulted in transgenic plants with reduced sensitivity to both cytokinins and ACC. The structure of the POLARIS locus and the potential role of POLARIS in regulating cytokinin-induced ethylene levels, with regards to the control of root growth, are discussed.
76

N-Acylethanolamines: Lipid Metabolites with Functions in Plant Growth and Development

Blancaflor, Elison B., Kilaru, Aruna, Keereetaweep, Jantana, Khan, Bibi Rafeiza, Faure, Lionel, Chapman, Kent D. 09 January 2014 (has links)
Twenty years ago, N‐acylethanolamines (NAEs) were considered by many lipid chemists to be biological ‘artifacts’ of tissue damage, and were, at best, thought to be minor lipohilic constituents of various organisms. However, that changed dramatically in 1993, when anandamide, an NAE of arachidonic acid (N‐arachidonylethanolamine), was shown to bind to the human cannabinoid receptor (CB1) and activate intracellular signal cascades in mammalian neurons. Now NAEs of various types have been identified in diverse multicellular organisms, in which they display profound biological effects. Although targets of NAEs are still being uncovered, and probably vary among eukaryotic species, there appears to be remarkable conservation of the machinery that metabolizes these bioactive fatty acid conjugates of ethanolamine. This review focuses on the metabolism and functions of NAEs in higher plants, with specific reference to the formation, hydrolysis and oxidation of these potent lipid mediators. The discussion centers mostly on early seedling growth and development, for which NAE metabolism has received the most attention, but also considers other areas of plant development in which NAE metabolism has been implicated. Where appropriate, we indicate cross‐kingdom conservation in NAE metabolic pathways and metabolites, and suggest areas where opportunities for further investigation appear most pressing.
77

Transposons in Arabidopsis : structure, activity, genome restructuring

Windsor, Aaron J. January 2001 (has links)
No description available.
78

Overexpression of wild-type and mutant BjHMGS1 in transgenic model plants and analysis on the Arabidopsis hmgs/HMGS mutant

Wang, Hui, 王晖 January 2011 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
79

Transposons in Arabidopsis : structure, activity, genome restructuring

Windsor, Aaron J. January 2001 (has links)
In the following study, I have investigated aberrant integration events of the maize Activator/Dissociation ( Ac/Ds) family of transposable elements (TEs) in Arabidopsis. The purpose of the study was twofold: (i) to identify sequence modifications associated with aberrant transposition that are informative regarding the mechanism of Ac/Ds transposition; and (ii) to extend our understanding of the mechanisms by which class II TEs can influence genome structure. This work focuses on a large inversion identified on chromosome II. A lone Ds element comprises one breakpoint of the inversion and the second breakpoint is composed solely of Arabidopsis sequences. The analysis of the sequence modifications present at both breakpoints indicates that the event was precipitated by the abortive transposition of Ds. This is the first event of its kind identified for an Ac/Ds and the event defines a novel mechanism by which these TEs can induce change within a genome. Further, the presence of deletions at both termini of the implicated Ds suggests that the transposition of Ac/Ds involves fully excised intermediates. To obtain further support for this model, a population of Arabidopsis individuals harboring Ds excision events was screened for reintegrated elements. Several integrations were analyzed at the sequence level and compared to wild-type integration sites. While no genome rearrangements were detected, a number of integrations display small deletions within both the Ds termini and the DNA flanking the elements. These results are consistent with the presence of fully excised Ac/Ds intermediates. Further, the results suggest that dissolution of the transposase active complex at different points in the transposition process will result in the formation of distinct aberrant transposition products. During the characterization of the inversion, a novel Arabidopsis TE family, FARE, was identified. The FARE elements are foldback transposons, a heterogeneous and poorly characteri
80

Telomerase Regulation in Arabidopsis thaliana

Nelson, Andrew 2012 August 1900 (has links)
Telomeres form a nucleoprotein cap at the end of eukaryotic chromosomes. The telomere protein constituents repress the DNA damage response (DDR) and facilitate maintenance of terminal sequences by a specialized ribonucleoprotein complex called telomerase. In turn, factors involved in the DDR guarantee telomerase acts only in telomere homeostasis, and not at double-strand breaks (DSBs). Thus, the three pathways surrounding telomeres display incredible overlap and are immensely complex. Here, I report a novel regulatory pathway that limits telomerase action during DNA damage. Duplication of the telomerase RNA subunit (TER) in Arabidopsis has given rise to a TER that is not required for telomere homeostasis. Indeed, this TER, termed TER2, is a competitive inhibitor of TER1 RNP complexes. Exposure to genotoxic agents results in TER2 upregulation and a subsequent inhibition of telomerase activity. Using data from the 1,001 Arabidopsis genomes project, I determine that the TER duplication and inhibitory nature of TER2 is likely derived from a transposon-like element within TER2. This element is found throughout Brassicaceae, with at least 32 members in Arabidopsis lyrata. These findings highlight the complex and diverse mechanisms by which an organism will regulate telomerase action. Here I characterize two members of the A. thaliana POT1 gene family. Contrary to POT1a, these proteins appear to have derived unique ways to perform their roles in chromosome-end protection. POT1b may protect telomeres as part of a TER2 telomerase RNP complex, as telomere defects only appear in the absence of both POT1b and TER2. POT1c is also appears to provide for chromosome end protection and appears to compete with POT1a to regulate telomerase access to the G-overhang. Together, these proteins represent part of a critical telomere capping complex distinct from CST. Additionally, I describe a means for elucidating factors that regulate telomere addition at DSBs. This incredibly detrimental process, termed de novo telomere formation (DNTF), is toxic, and thus this work describes the first in depth characterization of DNTF in multicellular eukaryotes. In summary, my work describes several novel regulatory and protective mechanisms for keeping telomeres and DSBs distinct.

Page generated in 0.0675 seconds