Spelling suggestions: "subject:"ehe beetle"" "subject:"ehe keetle""
191 |
The Red Top Model: A Landscape-Scale Integrodifference Equation Model of the Mountain Pine Beetle-Lodgepole Pine Forest InteractionHeavilin, Justin 01 May 2007 (has links)
Under normative conditions the mountain pine beetle (Dendroctonus ponderosae Hopkins) has played a regulating role in healthy lodgepole pine (Pinus contorta) forests. However, recently eruptive outbreaks that result from large pine beetle populations have destroyed vast tracts of valuable forest. The outbreaks in North America have received a great deal of attention from both the timber industry and government agencies as well as biologists and ecologists.
In this dissertation we develop a landscape-scaled integrodifference equation model describing the mountain pine beetle and its effect on a lodgepole pine forest. The model is built upon a stage-structured model of a healthy lodgepole pine forest with the addition of beetle pressure in the form of an infected tree class. These infected trees are produced by successful beetle attack, modelled by response functions. Different response functions reflect different probabilities for various densities. This feature of the model allows us to test hypotheses regarding density-dependent beetle attacks.
To capture the spatial aspect of beetle dispersal from infected trees we employ dispersal kernels. These provide a probabilistic model for finding given beetle densities at some distance from infected trees. Just as varied response functions model different attack dynamics, the choice of kernel can model different dispersal behavior. The modular nature of the Red Top Model yields multiple model candidates. These models allow discrimination between broad possibilities at the land scape scale: whether or not beetles are subject to a threshold effect at the lands cape scale and whether or not host selection is random or directed. We fit the model using estimating functions to two distinct types of data: aerial damage survey data and remote sensing imagery. Having constructed multiple models, we introduce a novel model selection methodology for spatial models based on facial recognition technology.
Because the regions and years of aerial damage survey and remote sensing data in the Sawtooth National Recreation Area overlap, we can compare the results from data sets to address the question of whether remote sensing data actually provides insight to the system that coarser scale but less expensive and more readily available aerial damage survey data does not.
|
192 |
Lodgepole Pine Susceptibility Rating of Mountain Pine Beetle Through the Use of a Density Management DiagramAnhold, John Albert 01 May 1986 (has links)
Ninety-four unmanaged lodgepole pine stands were examined to evaluate the relationship between stand density and susceptibility to mountain pine beetle attack. Sample included stands from a broad geographical range in the western United States.
Beetle population trends were not significantly related to variation in stand density as measured by stand density index (SDI). The percentage of trees killed per acre by the mountain pine beetle in stands with greater than eighty percent lodgepole pine did vary significantly with changes in SDI. From these data three SDI zones were identified: 1) stands with SDI's of less than 125 showed low potential for attack, 2) stands between 125 and 250 SDI showed much greater levels of tree mortality, gradually decreasing toward the 250 SDI, 3) tree mortality decreased in stands as density increased beyond the 250 SDI value.
|
193 |
Diets of Ladybird Beetles (Coleoptera: coccinellidae) in Utah Alfalfa FieldsDavidson, Lynette Nicole 01 December 2008 (has links)
Aphidophagous lady beetles rely on multiple sources of food in their environment. Alfalfa fields provide both aphids and many alternate foods, such as other arthropod prey, pollen, and fungi. Alfalfa fields (Medicago sativa L.) in Utah have low aphid densities, which may require lady beetles to consume alternative sources of food. Many methods can be used to determine these diets; frass analysis is used here to compare the diets of the introduced species Coccinella septempunctata L. with two native species, C. transversoguttata richardsoni Brown and Hippodamia convergens Guérin-Méneville, that occur in the Utah alfalfa habitat. In initial laboratory experiments to examine the feasibility of frass analysis, 48 hours at 20oC was sufficient time for adult lady beetles to pass prey cuticle through their guts. When consumed by these adults, pea aphids (Acyrthosiphon pisum [Harris]), alfalfa weevil larvae (Hypera postica [Gyllenhall]), and C. septempunctata larvae produced distinctive fragments in the frass. Such fragments could also be distinguished in frass collected in a field experiment in which aphid densities in plots of alfalfa were manipulated. Furthermore, additional consumed foods could be distinguished in the field experiment, including pollen, fungi, and other types of arthropods. Frass analysis demonstrated higher use of aphid prey by C. septempunctata adults collected from high versus low aphid density plots during the field experiment. Use of other types of prey, such as alfalfa weevil larvae, other arthropods, pollen and fungi, was similar between plots with high and low aphid densities. A field census was performed over two years to track the diets of the three species of lady beetles during the first crop of alfalfa, when two sources of prey in particular were present, aphids and alfalfa weevil larvae. Comparisons of diets revealed that the three species utilized different types of prey to similar degree during both years. In general, however, higher percentages of C. septempunctata adults were found to have consumed aphids and weevils during both years. Also, C. septempunctata was found to produce more frass and consume larger quantities of prey than either native species during the second year.
|
194 |
Influence of Mountain Pine Beetle on Fuels, Foliar Fuel Moisture Content, and Litter and Volatile Terpenes in Whitebark PineToone, Chelsea 01 December 2013 (has links)
Mountain pine beetle (Dendroctonus ponderosae Hopkins) has caused extensive tree mortality in whitebark pine (Pinus albicaulis Engelm) forests. Previous studies conducted in various conifer forests have shown that fine surface fuels are significantly altered during a bark beetle outbreak. Bark beetle activity in conifer stands has also been shown to alter foliar fuel moisture content and chemistry over the course of the bark beetle rotation.The objective of this study was to evaluate changes to fine surface fuels, foliar fuel moisture and chemistry and litter chemistry in and under whitebark pine trees infested by mountain pine beetle. Fuels were measured beneath green (healthy) trees compared to red (two years since initial MPB attack with 50% or greater needles remaining) and gray (greater than two years since attack with between 15% and 45% needles remaining) trees. Foliar moisture content was measured in four mountain pine beetle crown condition classes: green-uninfested, green-infested (current year’s attack), yellow (last year’s attack), and red. Total terpene content was analyzed in whitebark pine needle litter and volatile terpenes were collected and analyzed from green, green-infested, yellow, and red trees.Significant differences were found in litter depths under green, red, and graytrees. Duff depths were significantly less beneath green trees than red and gray trees. One hour and ten hour fuels were more influenced by diameter and crown size than beetle crown condition classes. Foliar fuel moisture content dramatically decreased from green-infested to the red beetle crown condition class. No differences were detected in shrub and forb biomass between green, red, and gray trees. Green-infested trees had significantly lower foliar fuel moisture than green trees and by late in the season showed fuel moisture levels similar to red trees which had the lowest fuel moisture content. Litter beneath red trees contained large amounts of terpenes, including compounds known to increase foliage flammability that remain in the litter throughout the fire season. Total terpene content emitted from red foliage is greater than green-infested or yellow foliage.
|
195 |
The Impact of a Mountain Pine Beetle Epidemic on Wildlife Habitat and Communities in Post-Epidemic Stands of a Lodgepole Pine Forest in Northern UtahStone, William E. 01 May 1995 (has links)
Natural disturbance events influence the patterns and processes in many forest ecosystems. Ecosystem management of coniferous forests in western North America requires the recognition of the importance that natural disturbance regimes have in achieving sustainable resource production and maintaining biological diversity . Mountain pine beetle epidemics have played an historic role in the succession and structure of lodgepole pine forests in this region. Their effects on wildlife habitat and communities are undocumented, but are presumed to be substantial. I sought to quantify these effects in forty 1-ha stands of monotypic, even-aged, mature lodgepole pine forest in northern Utah approximately 3-8 years following an extensive epidemic. I selected 5 stands that were unaffected by the epidemic and 35 that had tree mortalities ranging from 14 to 95 %. Mean understory biomass in 50 1-m2 plots demonstrated an exponential increase from 4g m-2 in unaffected stands, 40 g m-2 in stands with moderate (51-75% dead) tree mortalities, and up to 110 g m-2 in severely (76-100 % dead) affected stands. Plant species diversity and heterogeneity were highest in stands with moderate tree mortality. Horizontal visual obscurity (from 0- 2.5 m high) was highest in stands with> 40% tree mortality. Canopy cover and volume decreased linearly and curvilinearly, respectively, with increasing tree mortality. Foliage height diversity was higher in stands with moderate tree mortality than in stands with high, low, or no mortality. Abundance and diversity of avian species were highest in stands with moderate tree mortality. Small and medium-sized mammal species were more abundant and diverse in stands with moderate and severe tree mortality than in stands with no or low (26-50 % dead) tree mortality, but the pattern is less clear than for avian species. Fecal pellet groups of large ungulates increased linearly with increasing tree mortality, but the pattern of occurrence of snowshoe hare fecal pellets to increasing tree mortality was less clear. Insect abundance and species diversity increased linearly with tree mortality. Canonical correspondence analysis of insect, avian, and mammalian communities revealed that understory vegetation biomass, diversity, and heterogeneity, as well as foliage height diversity, were the habitat factors that consistently explained the distribution of these species in stands affected by beetle-caused tree mortality.
|
196 |
Use of an entomopathogenic, endophytic Metarhizium brunneum isolate (Cb15III) to manage wireworm and Colorado potato beetleHettlage, Laurenz 19 September 2018 (has links)
No description available.
|
197 |
Entomopathogenic nematodes for biological control of the Colorado potato beetle, Leptinotarsa decemlineata (Say)Armer, Christine Andrea 28 August 2002 (has links)
The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is
the most devastating foliage-feeding pest of potatoes in the United States.
Potential biological control agents include the nematodes Heterorhabditis
marelatus Liu & Berry and Steinernema riobrave Cabanillas, Poinar &
Raulston, which provided nearly 100% CPB control in previous laboratory
trials. In the present study, laboratory assays tested survival and infection by
the two species under the soil temperatures CPB are exposed to, from 4-37°C.
H. marelatus survived from 4-31°C, and S. riobrave from 4-37°C. Both
species infected and developed in waxworm hosts from 13-31°C, but H.
marelatus rarely infected hosts above 25°C, and S. riobrave rarely infected
hosts below 19°C. H. marelatus infected an average of 5.8% of hosts from 13-
31°C, whereas S. riobrave infected 1.4%. Although H. marelatus could not
survive at temperatures as high as S. riobrave. H. marelatus infected more
hosts so is preferable for use in CPB control.
Heterorhabditis marelatus rarely reproduced in CPB. Preliminary
laboratory trials suggested the addition of nitrogen to CPB host plants
improved nematode reproduction. Field studies testing nitrogen fertilizer
effects on nematode reproduction in CPB indicated that increasing nitrogen
from 226 kg/ha to 678 kg/ha produced 25% higher foliar levels of the alkaloids
solanine and chaconine. However, the increased alkaloids did not affect
nematode infection of, nor reproduction in, CPB prepupae. Nematodes applied
to field plot soil at 50 infective juveniles/cm² reduced adult CPB by 50%, and
increased numbers of dead prepupae in soil samples up to five times more than
in non-nematode plots.
Laboratory studies of H. marelatus and its symbiotic bacteria in CPB
hemolymph indicated that immune responses did not limit nematode
reproduction. A 58kD CPB hemolymph protein apparently caused the
symbiotic bacteria to switch to the secondary form, which does not produce
antibiotics and enzymes necessary for nematode growth and reproduction.
Despite heat denaturation of the protein, the nematodes did not reproduce
unless lipids were added to the hemolymph. Therefore, while H. marelatus
may provide high levels of CPB control, nutritional constraints on the
nematode and its bacteria inhibit reproduction in CPB and limit long-term
multi-generation control. / Graduation date: 2003
|
198 |
An Investigation of the Polarization States of Light Reflected from Scarab Beetles of the Chrysina Genus / En undersökning av polarisationstillståndet för ljus reflekterat från skalbaggar avsläktet ChrysinaFernandez del Rio, Lia January 2011 (has links)
The polarization behaviour for six species of Scarab beetles from the Chrysina genus is investigated with Mueller Matrix Spectroscopic Ellipsometer (MMSE). The m41 element of the matrix, which is related to the circular polarization behaviour, is analysed. The ellipticity, degree of polarization and azimuth angle are also presented to get a better understanding of the polarization effect. The measurements were done with a dual rotating compensator ellipsometer. The measured wavelength region was from 240 to 1000 nm and the angle of incidence from 25° to 75° in most of the cases. In general very high ellipticities (near circular) are reported. All specimens studied reflect both right- and left-handed polarized light. Depending on the species, two general types of polarization behaviour were observed. Chrysina macropus and Chrysina peruviana showed m41 values close to 0. Green stripes on Chrysina gloriosa showed similar polarization behaviour whereas gold stripes on the same beetle had much more pronounced m41 variations. Large m41 variations were also observed for Chrysina argenteola, Chrysina chrysargyrea and Chrysina resplendens. Four specimens of Chrysina resplendens show different m41 patterns suggesting differences in their structures.
|
199 |
An Investigation of the Polarizing Properties and Structural Characteristics in theCuticles of the Scarab Beetles Chrysina gloriosa and Cetonia aurataFernández del Río, Lía January 2012 (has links)
Light reflected from the scarab beetles Cetonia aurata (C. aurata) and Chrysina gloriosa (C. gloriosa) has left-handed polarization. In this work the polarizing properties and structural characteristics of the cuticles of these two beetles are investigated with two different techniques: scanning electron microscopy (SEM) and Mueller-matrix spectroscopic ellipsometry (MMSE). SEM is used to get cross section images of the epicutucle and the endocuticle. Thicknesses around 18 μm were measured for both layers for C. aurata and between 12 and 16 μm for C. gloriosa. A layered structure is observed in both beetles. In addition, a cusp-like structure is also observed in C. gloriosa. MMSE showed left-handed near-circular polarization of light reflected on both beetles. For C. aurata this is observed in a narrow wavelength range (500-600 nm) and for C. gloriosa in a wider wavelength range (400-700 nm) when measured on golden areas of the cuticle. C. gloriosa also has green areas where the reflected light was linearly polarized. The results are used in regression modelling. A good model approximation was found for C. aurata for angles up to 60 whereas a good starting point for future work was reached for C. gloriosa.
|
200 |
Reducing Uncertainty in The Biosphere-Atmsophere Exchange of Trace GasesNovick, Kimberly Ann January 2010 (has links)
<p>A large portion of the anthropogenic emissions of greenhouse gases (<italic>GHG</italic>s) are cycled through the terrestrial biosphere. Quantifying the exchange of these gases between the terrestrial biosphere and the atmosphere is critical to constraining their atmospheric budgets now and in the future. These fluxes are governed by biophysical processes like photosynthesis, transpiration, and microbial respiratory processes which are driven by factors like meteorology, disturbance regimes, and long term climate and land cover change. These complex processes occur over a broad range of temporal (seconds to decades) and spatial (millimeters to kilometers) scales, necessitating the application of simplifying models to forecast fluxes at the scales required by climate mitigation and adaptation policymakers. </p><p>Over the long history of biophysical research, much progress has been made towards developing appropriate models for the biosphere-atmosphere exchange of <italic>GHG</italic>s. Many processes are well represented in model frameworks, particularly at the leaf scale. However, some processes remain poorly understood, and models do not perform robustly over coarse spatial scales and long time frames. Indeed, model uncertainty is a major contributor to difficulties in constraining the atmospheric budgets of greenhouse gases. </p><p>The central objective of this dissertation is to reduce uncertainty in the quantification and forecasting of the biosphere-atmosphere exchange of greenhouse gases by addressing a diverse array of research questions through a combination of five unique field experiments and modeling exercises. In this first chapter, nocturnal evapotranspiration -- a physiological process which had been largely ignored until recent years -- is quantified and modeled in three unique ecosystems co-located in central North Carolina, U.S.A. In the second chapter, more long-term drivers of evapotranspiration are explored by developing and testing theoretical relationships between plant water use and hydraulic architecture that may be readily incorporated into terrestrial ecosystem models. The third chapter builds on this work by linking key parameters of carbon assimilation models to structural and climatic indices that are well-specified over much of the land surface in an effort to improve model parameterization schemes. The fourth chapter directly addresses questions about the interaction between physiological carbon cycling and disturbance regimes in current and future climates, which are generally poorly represented in terrestrial ecosystem models. And the last chapter explores effluxes of methane and nitrous oxide (which are historically understudied) in addition to CO<sub>2</sub> exchange in a large temperate wetland ecosystem (which is an historically understudied biome). While these five case studies are somewhat distinct investigations, they all: a) are all grounded in the principles of biophysics, b) rely on similar measurement and mathematical modeling techniques, and c) are conducted under the governing objective of reducing measurement and model uncertainty in the biosphere-atmosphere exchange of greenhouse gases.</p> / Dissertation
|
Page generated in 0.1272 seconds