Spelling suggestions: "subject:"ehe central limit theorem"" "subject:"ehe dentral limit theorem""
1 |
Some limit theorems and inequalities for weighted and non-identically distributed empirical processesAlexander, Kenneth S January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE / Vita. / Bibliography: leaves 135-137. / by Kenneth Sidney Alexander. / Ph.D.
|
2 |
Limit Theorems for Random FieldsZhang, Na 18 October 2019 (has links)
No description available.
|
3 |
Central limit theorems for D[0,1]-valued random variablesHahn, Marjorie Greene January 1975 (has links)
Thesis. 1975. Ph.D.--Massachusetts Institute of Technology. Dept. of Mathematics. / Vita. / Bibliography: leaves 111-114. / by Marjorie G. Hahn. / Ph.D.
|
4 |
Real Second-Order Freeness and Fluctuations of Random MatricesREDELMEIER, CATHERINE EMILY ISKA 09 September 2011 (has links)
We introduce real second-order freeness in second-order noncommutative probability spaces. We demonstrate that under this definition, independent ensembles of the three real models of random matrices which we consider, namely real Ginibre matrices, Gaussian orthogonal matrices, and real Wishart matrices, are asymptotically second-order free. These ensembles do not satisfy the complex definition of second-order freeness satisfied by their complex analogues. This definition may be used to calculate the asymptotic fluctuations of products of matrices in terms of the fluctuations of each ensemble.
We use a combinatorial approach to the matrix calculations similar to genus expansion, but in which nonorientable surfaces appear, demonstrating the commonality between the real ensembles and the distinction from their complex analogues, motivating this distinct definition. We generalize the description of graphs on surfaces in terms of the symmetric group to the nonorientable case.
In the real case we find, in addition to the terms appearing in the complex case corresponding to annular spoke diagrams, an extra set of terms corresponding to annular spoke diagrams in which the two circles of the annulus are oppositely oriented, and in which the matrix transpose appears. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2011-09-09 11:07:37.414
|
5 |
Estimation of the variation of prices using high-frequency financial dataYsusi Mendoza, Carla Mariana January 2005 (has links)
When high-frequency data is available, realised variance and realised absolute variation can be calculated from intra-day prices. In the context of a stochastic volatility model, realised variance and realised absolute variation can estimate the integrated variance and the integrated spot volatility respectively. A central limit theory enables us to do filtering and smoothing using model-based and model-free approaches in order to improve the precision of these estimators. When the log-price process involves a finite activity jump process, realised variance estimates the quadratic variation of both continuous and jump components. Other consistent estimators of integrated variance can be constructed on the basis of realised multipower variation, i.e., realised bipower, tripower and quadpower variation. These objects are robust to jumps in the log-price process. Therefore, given adequate asymptotic assumptions, the difference between realised multipower variation and realised variance can provide a tool to test for jumps in the process. Realised variance becomes biased in the presence of market microstructure effect, meanwhile realised bipower, tripower and quadpower variation are more robust in such a situation. Nevertheless there is always a trade-off between bias and variance; bias is due to market microstructure noise when sampling at high frequencies and variance is due to the asymptotic assumptions when sampling at low frequencies. By subsampling and averaging realised multipower variation this effect can be reduced, thereby allowing for calculations with higher frequencies.
|
6 |
Analytical and experimental performance comparison of energy detectors for cognitive radios /Ciftci, Selami, January 2008 (has links)
Thesis (M.S.)--University of Texas at Dallas, 2008. / Includes vita. Includes bibliographical references (leaves 62-63)
|
7 |
Martingale Central Limit Theorem and Nonuniformly Hyperbolic SystemsMohr, Luke 01 September 2013 (has links)
In this thesis we study the central limit theorem (CLT) for nonuniformly hyperbolic dynamical systems. We examine cases in which polynomial decay of correlations leads to a CLT with a non-standard scaling factor of √ n ln n. We also formulate an explicit expression for the the diffusion constant σ in situations where a return time function on the system is a certain class of supermartingale. We then demonstrate applications by exhibiting the CLT for the return time function in four classes of dynamical billiards, including one previously unproven case, the skewed stadium, as well as for the linked twist map. Finally, we introduce a new class of billiards which we conjecture are ergodic, and we provide numerical evidence to support that claim.
|
8 |
Temporal Complexity and Stochastic Central Limit TheoremPramukkul, Pensri 08 1900 (has links)
Complex processes whose evolution in time rests on the occurrence of a large and random number of intermittent events are the systems under study. The mean time distance between two consecutive events is infinite, thereby violating the ergodic condition and activating at the same time a stochastic central limit theorem that explains why the Mittag-Leffler function is a universal property of nature. The time evolution of these complex systems is properly generated by means of fractional differential equations, thus leading to the interpretation of fractional trajectories as the average over many random trajectories, each of which fits the stochastic central limit theorem and the condition for the Mittag-Leffler universality. Additionally, the effect of noise on the generation of the Mittag-Leffler function is discussed. Fluctuations of relatively weak intensity can conceal the asymptotic inverse power law behavior of the Mittag-Leffler function, providing a reason why stretched exponentials are frequently found in nature. These results afford a more unified picture of complexity resting on the Mittag-Leffler function and encompassing the standard inverse power law definition.
|
9 |
[en] MARTINGALE CENTRAL LIMIT THEOREM / [pt] TEOREMA CENTRAL DO LIMITE PARA MARTINGAISRODRIGO BARRETO ALVES 13 December 2017 (has links)
[pt] Esta dissertação é dedicada ao estudo das taxas de convergência no Teorema Central do Limite para Martingais. Começamos a primeira parte da tese apresentando a Teoria de Martingais, introduzindo o conceito de esperança condicional e suas propriedades. Desta forma poderemos descrever o que é um Martingal, mostraremos alguns exemplos, e exporemos alguns dos seus principais teoremas. Na segunda parte da tese vamos analisar o Teorema Central do Limite para variáveis aleatórias, apresentando os conceitos de função característica e convergência em distribuição, que serão utilizados nas provas de diferentes versões do Teorema Central do Limite. Demonstraremos três formas do Teorema Central do Limite, para variáveis aleatórias independentes e identicamente distribuídas, a de Lindeberg-Feller
e para uma Poisson. Após, apresentaremos o Teorema Central do Limite para Martingais, demonstrando uma forma mais geral e depois enunciaremos uma forma mais específica a qual focaremos o resto da tese. Por fim iremos discutir as taxas de convergência no Teorema Central do Limite, com foco nas taxas de convergência no Teorema Central do Limite para Martingais. Em particular, exporemos o resultado de [4], o qual determina, até uma constante multiplicativa, a dependência ótima da taxa de um certo parâmetro do martingal. / [en] This dissertation is devoted to the study of the rates of convergence in the Martingale Central Limit Theorem. We begin the first part presenting the Martingale Theory, introducing the concept of conditional expectation and its properties. In this way we can describe what a martingale is, present examples of martingales, and state some of the principal theorems and results about them. In the second part we will analyze the Central Limit Theorem for random variables, presenting the concepts of characteristic
function and the convergence in distribution, which will be used in the proof of various versions of the Central Limit Theorem. We will demonstrate three different forms of the Central Limit Theorem, for independent and identically distributed random variables, Lindeberg-Feller and for a Poisson
distribution. After that we can introduce the Martingale Central Limit Theorem, demonstrating a more general form and then stating a more specific form on which we shall focus. Lastly, we will discuss rates of
convergence in the Central Limit Theorems, with a focus on the rates of convergence in the Martingale Central Limit Theorem. In particular, we state results of [4], which determine, up to a multiplicative constant, the optimal dependence of the rate on a certain parameter of the martingale.
|
10 |
Edgeworthův rozvoj / Edgeworth expansionDzurilla, Matúš January 2019 (has links)
This thesis is focused around Edgeworths expansion for aproximation of distribution for parameter estimation. Aim of the thesis is to introduce term Edgeworths expansion, its assumptions and terminology associeted with it. Afterwords demonstrate process of deducting first term of Edgeworths expansion. In the end demonstrate this deduction on examples and compare it with different approximations (mainly central limit theorem), and show strong and weak points of Edgeworths expansion.
|
Page generated in 0.0868 seconds