Spelling suggestions: "subject:"ehe EM algorithm"" "subject:"ehe EM allgorithm""
61 |
Uma abordagem para a detecção de mudanças em imagens multitemporais de sensoriamento remoto empregando Support Vector Machines com uma nova métrica de pertinênciaAngelo, Neide Pizzolato January 2014 (has links)
Esta tese investiga uma abordagem não supervisionada para o problema da detecção de mudanças em imagens multiespectrais e multitemporais de sensoriamento remoto empregando Support Vector Machines (SVM) com o uso dos kernels polinomial e RBF e de uma nova métrica de pertinência de pixels. A proposta metodológica está baseada na diferença das imagens-fração produzidas para cada data. Em imagens de cenas naturais essa diferença nas frações de solo e vegetação tendem a apresentar uma distribuição simétrica próxima à origem. Essa caracteristica pode ser usada para modelar as distribuições normais multivariadas das classes mudança e não-mudança. O algoritmo Expectation-Maximization (EM) é implementado com a finalidade de estimar os parâmetros (vetor de médias, matriz de covariância e probabilidade a priori) associados a essas duas distribuições. A seguir, amostras aleatórias e normalmente distribuidas são extraídas dessas distribuições e rotuladas segundo sua pertinência em uma das classes. Essas amostras são então usadas no treinamento do classificador SVM. A partir desta classificação é estimada uma nova métrica de pertinência de pixels. A metodologia proposta realiza testes com o uso de conjuntos de dados multitemporais de imagens multiespectrais Landsat-TM que cobrem a mesma cena em duas datas diferentes. A métrica de pertinência proposta é validada através de amostras de teste controladas obtidas a partir da técnica Change Vetor Analysis, além disso, os resultados de pertinência obtidos para a imagem original com essa nova métrica são comparados aos resultados de pertinência obtidos para a mesma imagem pela métrica proposta em (Zanotta, 2010). Baseado nos resultados apresentados neste trabalho que mostram que a métrica para determinação de pertinência é válida e também apresenta resultados compatíveis com outra técnica de pertinência publicada na literatura e considerando que para obter esses resultados utilizou-se poucas amostras de treinamento, espera-se que essa métrica deva apresentar melhores resultados que os que seriam apresentados com classificadores paramétricos quando aplicado a imagens multitemporais e hiperespectrais. / This thesis investigates a unsupervised approach to the problem of change detection in multispectral and multitemporal remote sensing images using Support Vector Machines (SVM) with the use of polynomial and RBF kernels and a new metric of pertinence of pixels. The methodology is based on the difference-fraction images produced for each date. In images of natural scenes. This difference in the fractions of bare soil and vegetation tend to have a symmetrical distribution close to the origin. This feature can be used to model the multivariate normal distributions of the classes change and no-change. The Expectation- Maximization algorithm (EM) is implemented in order to estimate the parameters (mean vector, covariance matrix and a priori probability) associated with these two distributions. Then random and normally distributed samples are extracted from these distributions and labeled according to their pertinence to the classes. These samples are then used in the training of SVM classifier. From this classification is estimated a new metric of pertinence of pixel. The proposed methodology performs tests using multitemporal data sets of multispectral Landsat-TM images that cover the same scene at two different dates. The proposed metric of pertinence is validated via controlled test samples obtained from Change Vector Analysis technique. In addition, the results obtained at the original image with the new metric are compared to the results obtained at the same image applying the pertinence metric proposed in (Zanotta, 2010). Based on the results presented here showing that the metric of pertinence is valid, and also provides results consistent with other published in the relevant technical literature, and considering that to obtain these results was used a few training samples, it is expected that the metric proposed should present better results than those that would be presented with parametric classifiers when applied to multitemporal and hyperspectral images.
|
62 |
Uma metodologia para a detecção de mudanças em imagens multitemporais de sensoriamento remoto empregando Support Vector MachinesFerreira, Rute Henrique da Silva January 2014 (has links)
Esta tese investiga uma abordagem supervisionada para o problema da detecção de mudanças em imagens multitemporais de sensoriamento remoto empregando Support Vector Machines (SVM) com o uso dos kernels polinomial e gaussiano (RBF). A proposta metodológica está baseada na diferença das imagens-fração produzidas para cada data. Em imagens de cenas naturais a diferença nas frações de solo e vegetação tendem a apresentar uma distribuição simétrica em torno da origem. Esse fato pode ser usado para modelar duas distribuições normais multivariadas: mudança e não-mudança. O algoritmo Expectation-Maximization (EM) é implementado para estimar os parâmetros (vetor de médias, matriz de covariância e probabilidade a priori) associados a essas duas distribuições. Amostras aleatórias são extraídas dessas distribuições e usadas para treinar o classificador SVM nesta abordagem supervisionada. A metodologia proposta realiza testes com o uso de conjuntos de dados multitemporais de imagens multiespectrais TM-Landsat, que cobrem a mesma cena em duas datas diferentes. Os resultados são comparados com outros procedimentos, incluindo trabalhos anteriores, um conjunto de dados sintéticos e o classificador SVM One-Class. / In this thesis, we investigate a supervised approach to change detection in remote sensing multi-temporal image data by applying Support Vector Machines (SVM) technique using polynomial kernel and Gaussian kernel (RBF). The methodology is based on the difference-fraction images produced for two dates. In natural scenes, the difference in the fractions such as vegetation and bare soil occurring in two different dates tend to present a distribution symmetric around the origin of the coordinate system. This fact can be used to model two normal multivariate distributions: class change and no-change. The Expectation-Maximization algorithm (EM) is implemented to estimate the parameters (mean vector, covariance matrix and a priori probability) associated with these two distributions. Random samples are drawn from these distributions and used to train the SVM classifier in this supervised approach.The proposed methodology performs tests using multi-temporal TMLandsat multispectral image data covering the same scene in two different dates. The results are compared to other procedures including previous work, a synthetic data set and SVM One-Class.
|
63 |
Uma abordagem para a detecção de mudanças em imagens multitemporais de sensoriamento remoto empregando Support Vector Machines com uma nova métrica de pertinênciaAngelo, Neide Pizzolato January 2014 (has links)
Esta tese investiga uma abordagem não supervisionada para o problema da detecção de mudanças em imagens multiespectrais e multitemporais de sensoriamento remoto empregando Support Vector Machines (SVM) com o uso dos kernels polinomial e RBF e de uma nova métrica de pertinência de pixels. A proposta metodológica está baseada na diferença das imagens-fração produzidas para cada data. Em imagens de cenas naturais essa diferença nas frações de solo e vegetação tendem a apresentar uma distribuição simétrica próxima à origem. Essa caracteristica pode ser usada para modelar as distribuições normais multivariadas das classes mudança e não-mudança. O algoritmo Expectation-Maximization (EM) é implementado com a finalidade de estimar os parâmetros (vetor de médias, matriz de covariância e probabilidade a priori) associados a essas duas distribuições. A seguir, amostras aleatórias e normalmente distribuidas são extraídas dessas distribuições e rotuladas segundo sua pertinência em uma das classes. Essas amostras são então usadas no treinamento do classificador SVM. A partir desta classificação é estimada uma nova métrica de pertinência de pixels. A metodologia proposta realiza testes com o uso de conjuntos de dados multitemporais de imagens multiespectrais Landsat-TM que cobrem a mesma cena em duas datas diferentes. A métrica de pertinência proposta é validada através de amostras de teste controladas obtidas a partir da técnica Change Vetor Analysis, além disso, os resultados de pertinência obtidos para a imagem original com essa nova métrica são comparados aos resultados de pertinência obtidos para a mesma imagem pela métrica proposta em (Zanotta, 2010). Baseado nos resultados apresentados neste trabalho que mostram que a métrica para determinação de pertinência é válida e também apresenta resultados compatíveis com outra técnica de pertinência publicada na literatura e considerando que para obter esses resultados utilizou-se poucas amostras de treinamento, espera-se que essa métrica deva apresentar melhores resultados que os que seriam apresentados com classificadores paramétricos quando aplicado a imagens multitemporais e hiperespectrais. / This thesis investigates a unsupervised approach to the problem of change detection in multispectral and multitemporal remote sensing images using Support Vector Machines (SVM) with the use of polynomial and RBF kernels and a new metric of pertinence of pixels. The methodology is based on the difference-fraction images produced for each date. In images of natural scenes. This difference in the fractions of bare soil and vegetation tend to have a symmetrical distribution close to the origin. This feature can be used to model the multivariate normal distributions of the classes change and no-change. The Expectation- Maximization algorithm (EM) is implemented in order to estimate the parameters (mean vector, covariance matrix and a priori probability) associated with these two distributions. Then random and normally distributed samples are extracted from these distributions and labeled according to their pertinence to the classes. These samples are then used in the training of SVM classifier. From this classification is estimated a new metric of pertinence of pixel. The proposed methodology performs tests using multitemporal data sets of multispectral Landsat-TM images that cover the same scene at two different dates. The proposed metric of pertinence is validated via controlled test samples obtained from Change Vector Analysis technique. In addition, the results obtained at the original image with the new metric are compared to the results obtained at the same image applying the pertinence metric proposed in (Zanotta, 2010). Based on the results presented here showing that the metric of pertinence is valid, and also provides results consistent with other published in the relevant technical literature, and considering that to obtain these results was used a few training samples, it is expected that the metric proposed should present better results than those that would be presented with parametric classifiers when applied to multitemporal and hyperspectral images.
|
64 |
Aplikace zobecněného lineárního modelu na směsi pravděpodobnostních rozdělení / Application of generalized linear model for mixture distributionsPokorný, Pavel January 2009 (has links)
This thesis is intent on using mixtures of probability distributions in generalized linear model. The theoretical part is divided into two parts. In the first chapter a generalized linear model (GLM) is defined as an alternative to the classical linear regression model. The second chapter describes the mixture of probability distributions and estimate of their parameters. At the end of the second chapter, the previous theories are connected into the finite mixture generalized linear model. The last third part is practical and shows concrete examples of these models.
|
65 |
Bayesian mixture models for frequent itemset miningHe, Ruofei January 2012 (has links)
In binary-transaction data-mining, traditional frequent itemset mining often produces results which are not straightforward to interpret. To overcome this problem, probability models are often used to produce more compact and conclusive results, albeit with some loss of accuracy. Bayesian statistics have been widely used in the development of probability models in machine learning in recent years and these methods have many advantages, including their abilities to avoid overfitting. In this thesis, we develop two Bayesian mixture models with the Dirichlet distribution prior and the Dirichlet process (DP) prior to improve the previous non-Bayesian mixture model developed for transaction dataset mining. First, we develop a finite Bayesian mixture model by introducing conjugate priors to the model. Then, we extend this model to an infinite Bayesian mixture using a Dirichlet process prior. The Dirichlet process mixture model is a nonparametric Bayesian model which allows for the automatic determination of an appropriate number of mixture components. We implement the inference of both mixture models using two methods: a collapsed Gibbs sampling scheme and a variational approximation algorithm. Experiments in several benchmark problems have shown that both mixture models achieve better performance than a non-Bayesian mixture model. The variational algorithm is the faster of the two approaches while the Gibbs sampling method achieves a more accurate result. The Dirichlet process mixture model can automatically grow to a proper complexity for a better approximation. However, these approaches also show that mixture models underestimate the probabilities of frequent itemsets. Consequently, these models have a higher sensitivity but a lower specificity.
|
66 |
Směsi pravděpodobnostních rozdělení / Mixture distributionsNedvěd, Jakub January 2012 (has links)
Object of this thesis is to construct a mixture model of earnings of the Czech households. In first part are described characteristics of mixtures of statistical distributions with the focus on the mixtures of normal distibutions. In practical part of this thesis are constructed models with parameters extimations based on the data from EU-SILC. Models made by graphical method, EM algorithm and method of maximum likelihood. The quality of models is measured by Akaike information criterion.
|
67 |
Gaussian mixtures in R / Gaussian mixtures in RMarek, Petr January 2015 (has links)
Using Gaussian mixtures is a popular and very flexible approach to statistical modelling. The standard approach of maximum likelihood estimation cannot be used for some of these models. The estimates are, however, obtainable by iterative solutions, such as the EM (Expectation-Maximization) algorithm. The aim of this thesis is to present Gaussian mixture models and their implementation in R. The non-trivial case of having to use the EM algorithm is assumed. Existing methods and packages are presented, investigated and compared. Some of them are extended by custom R code. Several exhaustive simulations are run and some of the interesting results are presented. For these simulations, a notion of usual fit is presented.
|
68 |
Bias in mixtures of normal distributions and joint modeling of longitudinal and time-to-event data with monotonic change curvesLourens, Spencer 01 May 2015 (has links)
Estimating parameters in a mixture of normal distributions dates back to the 19th century when Pearson originally considered data of crabs from the Bay of Naples. Since then, many real world applications of mixtures have led to various proposed methods for studying similar problems. Among them, maximum likelihood estimation (MLE) and the continuous empirical characteristic function (CECF) methods have drawn the most attention. However, the performance of these competing estimation methods has not been thoroughly studied in the literature and conclusions have not been consistent in published research. In this article, we review this classical problem with a focus on estimation bias. An extensive simulation study is conducted to compare the estimation bias between the MLE and CECF methods over a wide range of disparity values. We use the overlapping coefficient (OVL) to measure the amount of disparity, and provide a practical guideline for estimation quality in mixtures of normal distributions. Application to an ongoing multi-site Huntington disease study is illustrated for ascertaining cognitive biomarkers of disease progression.
We also study joint modeling of longitudinal and time-to-event data and discuss pattern-mixture and selection models, but focus on shared parameter models, which utilize unobserved random effects in order to "join" a marginal longitudinal data model and marginal survival model in order to assess an internal time-dependent covariate's effect on time-to-event. The marginal models used in the analysis are the Cox Proportional Hazards model and the Linear Mixed model, and both of these models are covered in some detail before defining joints models and describing the estimation process. Joint modeling provides a modeling framework which accounts for correlation between the longitudinal data and the time-to-event data, while also accounting for measurement error in the longitudinal process, which previous methods failed to do. Since it has been shown that bias is incurred, and this bias is proportional to the amount of measurement error, utilizing a joint modeling approach is preferred. Our setting is also complicated by monotone degeneration of the internal covariate considered, and so a joint model which utilizes monotone B-Splines to recover the longitudinal trajectory and a Cox Proportional Hazards (CPH) model for the time-to-event data is proposed. The monotonicity constraints are satisfied via the Projected Newton Raphson Algorithm as described by Cheng et al., 2012, with the baseline hazard profiled out of the $Q$ function in each M-step of the Expectation Maximization (EM) algorithm used for optimizing the observed likelihood. This method is applied to assess Total Motor Score's (TMS) ability to predict Huntington Disease motor diagnosis in the Biological Predictors of Huntington's Disease study (PREDICT-HD) data.
|
69 |
ON THE PREDICTIVE PERFORMANCE OF THE STOCK RETURNS BY USING THE MARKOV-SWITCHING MODELSWu, Yanan January 2020 (has links)
This paper proposes the basic predictive regression and Markov Regime-Switching regression to predict the excess stock returns in both US and Sweden stock markets. The analysis shows that the Markov Regime-Switching regression models out perform the linear ones in out-of-sample forecasting, which is due to the fact that the regime-switching models capture the economic expansion and recession better.
|
70 |
Modeling IP traffic using the batch Markovian arrival processKlemm, Alexander, Lindemann, Christoph, Lohmann, Marco 10 December 2018 (has links)
In this paper, we show how to utilize the expectation-maximization (EM) algorithm for efficient and numerical stable parameter estimation of the batch Markovian arrival process (BMAP). In fact, effective computational formulas for the E-step of the EM algorithm are presented, which utilize the well-known randomization technique and a stable calculation of Poisson jump probabilities. Moreover, we identify the BMAP as an analytically tractable model of choice for aggregated traffic modeling of IP networks. The key idea of this aggregated traffic model lies in customizing the BMAP such that different lengths of IP packets are represented by rewards of the BMAP. Using measured traffic data, a comparative study with the MMPP and the Poisson process illustrates the effectiveness of the customized BMAP for IP traffic modeling by visual inspection of sample paths over several time scales, by presenting important statistical properties as well as by investigations of queuing behavior.
|
Page generated in 0.0594 seconds