• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scalable Predictive Maintenance through the Eclipse Arrowhead Framework

Johansson, Anton January 2022 (has links)
With the rise of Industry 4.0 and the 4:th industrial revolution withthe Internet of Things, infrastructures have become more prevalent to connect and monitor many different systems within an industrial set-ting. With many candidates for this IoT infrastructure, there is a need to evaluate the different candidates to determine the different strengthsand weaknesses of the infrastructure.This thesis investigates the use of the Eclipse Arrowhead framework in the application of scalable infrastructure used for predictive mainte-nance. This investigation is conducted by converting an existing pre-dictive maintenance implementation that is using Amazon Web Services as the IoT infrastructure into a predictive maintenance implementationusing the Eclipse Arrowhead framework as the infrastructure.This design science artifact which results from this thesis shows that the Eclipse Arrowhead framework is suitable for a scalable infrastruc-ture though some shortcomings of the framework were found during the implementation. And though it is a suitable infrastructure, the usage ofthe framework should depend on the specific needs of the infrastructureand should not be used as a “one size fits all” solution.
2

Towards Digitization and Machine learning Automation for Cyber-Physical System of Systems

Javed, Saleha January 2022 (has links)
Cyber-physical systems (CPS) connect the physical and digital domains and are often realized as spatially distributed. CPS is built on the Internet of Things (IoT) and Internet of Services, which use cloud architecture to link a swarm of devices over a decentralized network. Modern CPSs are undergoing a foundational shift as Industry 4.0 is continually expanding its boundaries of digitization. From automating the industrial manufacturing process to interconnecting sensor devices within buildings, Industry 4.0 is about developing solutions for the digitized industry. An extensive amount of engineering efforts are put to design dynamically scalable and robust automation solutions that have the capacity to integrate heterogeneous CPS. Such heterogeneous systems must be able to communicate and exchange information with each other in real-time even if they are based on different underlying technologies, protocols, or semantic definitions in the form of ontologies. This development is subject to interoperability challenges and knowledge gaps that are addressed by engineers and researchers, in particular, machine learning approaches are considered to automate costly engineering processes. For example, challenges related to predictive maintenance operations and automatic translation of messages transmitted between heterogeneous devices are investigated using supervised and unsupervised machine learning approaches. In this thesis, a machine learning-based collaboration and automation-oriented IIoT framework named Cloud-based Collaborative Learning (CCL) is developed. CCL is based on a service-oriented architecture (SOA) offering a scalable CPS framework that provides machine learning-as-a-Service (MLaaS). Furthermore, interoperability in the context of the IIoT is investigated. I consider the ontology of an IoT device to be its language, and the structure of that ontology to be its grammar. In particular, the use of aggregated language and structural encoders is investigated to improve the alignment of entities in heterogeneous ontologies. Existing techniques of entity alignment are based on different approaches to integrating structural information, which overlook the fact that even if a node pair has similar entity labels, they may not belong to the same ontological context, and vice versa. To address these challenges, a model based on a modification of the BERT_INT model on graph triples is developed. The developed model is an iterative model for alignment of heterogeneous IIoT ontologies enabling alignments within nodes as well as relations. When compared to the state-of-the-art BERT_INT, on DBPK15 language dataset the developed model exceeds the baseline model by (HR@1/10, MRR) of 2.1%. This motivated the development of a proof-of-concept for conducting an empirical investigation of the developed model for alignment between heterogeneous IIoT ontologies. For this purpose, a dataset was generated from smart building systems and SOSA and SSN ontologies graphs. Experiments and analysis including an ablation study on the proposed language and structural encoders demonstrate the effectiveness of the model. The suggested approach, on the other hand, highlights prospective future studies that may extend beyond the scope of a single thesis. For instance, to strengthen the ablation study, a generalized IIoT ontology that is designed for any type of IoT devices (beyond sensors), such as SAREF can be tested for ontology alignment. Next potential future work is to conduct a crowdsourcing process for generating a validation dataset for IIoT ontology alignment and annotations. Lastly, this work can be considered as a step towards enabling translation between heterogeneous IoT sensor devices, therefore, the proposed model can be extended to a translation module in which based on the ontology graphs of any device, the model can interpret the messages transmitted from that device. This idea is at an abstract level as of now and needs extensive efforts and empirical study for full maturity.

Page generated in 0.2136 seconds