• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 215
  • 40
  • 27
  • 23
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 508
  • 508
  • 76
  • 50
  • 44
  • 43
  • 42
  • 40
  • 39
  • 38
  • 36
  • 36
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Infrared Spectroscopy of Graphene in Ultrahigh Magnetic Fields

Booshehri, Layla 06 September 2012 (has links)
Graphene – a two-dimensional honeycomb lattice of sp2-bonded carbon atoms – possesses unusual zero-gap band structure with linear band dispersions, accommodating photon-like, massless electrons that have exhibited a variety of surprising phenomena, primarily in DC transport, in the last several years. In this thesis dissertation, we investigate graphene’s AC or infrared properties in the presence of an ultrahigh magnetic field, produced by a destructive pulsed method. The linear dispersions of graphene lead to unequally spaced Landau levels in a magnetic field, which we probe through cyclotron resonance (CR) spectroscopy in the magnetic quantum limit. Specifically, using magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 μm, we experimentally investigated CR in large-area graphene grown by chemical vapor deposition. Circular-polarization-dependent studies revealed strong p-type doping for as-grown graphene, and the dependence of the CR fields on the radiation wavelength allowed for an accurate determination of the Fermi energy. Upon annealing the sample to remove physisorbed molecules, which shifts the Fermi energy closer to the Dirac point, we made the unusual observation that hole and electron CR emerges in the magnetic quantum limit, even though the sample is still p-type. We theoretically show that this non-intuitive phenomenon is a direct consequence of the unusual Landau level structure of graphene. Namely, if the Fermi energy lies in the n = 0 Landau level, then CR is present for both electron-active and hole-active circular polarizations. Furthermore, if the Fermi level lies in the n = 0 Landau level, the ratio of CR absorption between the electron-active and hole-active peaks allows one to accurately determine the Fermi level and carrier density. Hence, high-field CR studies allow not only for fundamental studies but also for characterization of large-area, low-mobility graphene samples.
162

The Effect of Bias Voltage and External Magnetic Field on Transport Processes of a Two-Dimensional Plasma

Tsai, Sheng-You 08 August 2011 (has links)
This study uses the MHD (Magnetohydrodynamics) model to simulate unsteady two-dimensional transport variables in helium plasma under low pressure between two infinite planar electrodes suddenly biased by a negative voltage. Plasma has been widely used in etching, ion implantation, light source, and encountered in nuclear fusion, etc. Studying transport processes of plasmas therefore is important. By account for momentum exchange collisions, electric fields and magnetic fields the computed results in this work quantitatively show density, velocity, electric potential, temperature, viscosity, thermal conductivity of the ions and electrons across the sheath to the surfaces suddenly biased by a dc negative voltage.
163

Smoother Substrate Deposition Designs and Process Emulations of DC Magnetron Sputters

Chang, Chih-Wen 17 August 2012 (has links)
To smooth the substrate depositions of DC magnetron sputter (MS), such that the supplementary electrical and mechanical adjustment efforts can be alleviated, a refinement scheme that can be applied directly to the existing DC MS will be introduced. By properly controlling the magnetic and electric fields inside the vacuum chamber, trajectories of those atoms that are sputtered from the target surface can be more spread out. In addition, with the resultant higher plasma density, chance of collisions among the sputtered atoms and those Ar ions in the plasma will also be increased, hence the resulting distributions of target atoms deposited on the substrate surface will certainly be evened out. To further confirm such concepts, a rational emulating process that can explore both the atom sputtering process from the target and those collisions at the chamber with different three-dimensional magnetic and electric field environments is also developed. Thus the associated performance investigations on the DC MS with different magnetron arrangements can then be conveniently carried out.
164

International Workshop on Measuring Techniques for Liquid Metal Flows (MTLM), Rossendorf, 11.-13.10.99, Proceedings

Gerbeth, Gunter, Eckert, Sven 31 March 2010 (has links) (PDF)
The International Workshop on "Measuring Techniques in Liquid Metal Flows" (MTLM Workshop) was organised in frame of the Dresden "Innovationskolleg Magnetofluiddynamik". The subject of the MTLM Workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of non-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available to monitor and to control flow processes in real industrial facilities.
165

Magnetic field enhancement of Coulomb blockade conductance oscillations in metal-metal oxide double barrier tunnel devices fabricated using atomic force microscope nanolithography

Wiemeri, Jeffrey Charles 28 August 2008 (has links)
Not available / text
166

An investigation of the physical parameters of young stellar objects

Deen, Casey Patrick 26 January 2012 (has links)
Studies of the temporal evolution of young stars and their associated properties rely upon the ability of astronomers to determine ages and masses of objects in different evolutionary states. The best method for determining the age and mass of a young stellar object is to place the object on the Hertzsprung-Russell (HR) diagram and to compare to theoretical evolutionary tracks. Accurate ages allow the investigation of the temporal evolution of properties associated with stellar youth (accretion rates, X-ray activity, circumstellar excess, etc...). One property intimately linked with stellar youth is the presence (or absence) of an optically thick primordial circumstellar disk. Objects in "young" star forming regions are more likely to show evidence for a disk than objects in "older" clusters. Within a single cluster, the picture is not as clear. There exist objects in very young clusters (~1 Myr) which show no evidence for circumstellar disks, and there exist objects in very old clusters (~10 Myr), which show evidence for robust disks, suggesting a variable other than stellar age is driving the evolution of the disks. To investigate whether these outliers are due to age spreads, initial conditions, or simply appear anomalous due to erroneous age determinations, we must determine better placements in the HR diagram by carefully transforming observable quantities (spectral type and apparent magnitude) into the quantities necessary for comparison evolutionary models (effective temperature and luminosity). In the Ophiuchus star forming region, I investigate whether or not objects with disks are younger than disk-less objects. I find no difference in the ages of the two populations, but the systematic and random uncertainties are large enough to mask all but the largest age differences. In the hope of better determining the physical parameters of young stellar objects, I embark on a spectral synthesis campaign to produce comparison synthetic spectra which account for the effects of magnetic fields. This requires the modification of the MOOG spectral synthesis program to handle the full Stokes vector treatment for polarized radiation through a magnetized medium. I create a grid of synthetic spectra covering ranges in effective temperature, surface gravity, and average magnetic field strength relevant for studies of young stellar objects, and develop a Chi-squared minimization routine to determine the best fit synthetic spectrum for a given observed spectrum at an arbitrary resolving power. This grid of synthetic spectra will be an invaluable complement to future near infrared, large band-pass, high-resolving power spectrographs (i.e. IGRINS). In addition to these observational and theoretical attempts to reduce systematic errors, I also helped to develop a suite of silicon and KRS-5 grisms for use in the FORCAST instrument, a mid infrared camera on the SOFIA telescope. These grisms will afford the imaging instrument a mid infrared spectroscopic capability at wavelengths normally inaccessible from the ground. I also report on my work to help write FG Widget, the quick-look reduction software package developed to support grism observations. / text
167

Spectropolarimetry of Fine Magnetized Structures in the Upper Solar Atmosphere

Schad, Thomas Anthony January 2013 (has links)
One of the earliest indications of magnetic fields acting in the solar atmosphere came at the beginning of the 20th century when George Hale noted a "decided definiteness of structure" in photographs within the Hydrogen Balmer-alpha line core. Fine structure both in the chromosphere and in the corona result from processes that are not well understood but accepted as a consequence of the solar magnetic field. Our knowledge of this field is lacking, and until recently, the assumed relationship between fine thermal structure and the magnetic field remained untested. Here, spectropolarimetric diagnostics of fine structures in the solar chromosphere and cool corona are advanced using the infrared He I triplet at 1083 nm. Precise calibration procedures are developed for the Facility Infrared Spectropolarimeter (FIRS), recently commissioned at the Dunn Solar Telescope. Together with high-order adaptive optics, we simultaneously map fine structures while obtaining a polarimetric sensitivity of up to 2 x 10 ⁻⁴ of the incoming intensity. These instrument improvements result in the first maps of the He I polarized signatures within an active region superpenumbra, where Hale first recognized fine-structuring. Selective absorption and emission processes due to non-equilibrium optical pumping are recognized. Our interpretation, using advanced inversions of the He I triplet, provides confirmation of Hale's initial suspicion--the fine structures of the solar chromosphere are visual markers for the magnetic field. Yet, the fine chromospheric thermal structure is not matched by an equivalently fine magnetic structure. Our ability to measure this field suggests the utility of the He I triplet as an inner boundary condition for the inner heliospheric magnetic field. In the corona itself, we infer the vector properties of a catastrophically-cooled coronal loop, uniting space-based and ground-based instrumentation. We determine how fine loops are anchored in the photosphere via a narrow umbral flare, the consequence of a supersonic downflow of cooled material. A stereoscopic reconstruction as well as full-Stokes inversions of the He I measurements provide the first comparison of the 3D thermal structure and 3D magnetic structure of a fine-scaled coronal loop.
168

ULTRAWEAK PHOTON EMISSION IN CELLS: COUPLING TO MOLECULAR PATHWAYS, APPLIED MAGNETIC FIELDS, AND POTENTIAL NON-LOCALITY

Dotta, Blake 19 March 2014 (has links)
The possibilities and implications of photons within the infrared, visible, and ultraviolet behaving as sources of intracellular and intercellular communication and information were investigated experimentally for melanoma cells during the 24 hrs following removal from incubation. Specific wavelengths during different intervals were associated with specific classes of biomolecules that were predicted based on the physical properties associated with their amino acid sequences. Application of a specific intensity and physiologically patterned magnetic field predicted from a model that applied the concept of magnetic moment to the whole cell resulted in photon emissions. They were detected at distances sufficient to allow intercellular communication. The occurrence of macroscopic entanglement or non-locality was shown between two loci of where simple chemically-based photons emissions were generated. Within all three experiments there was marked quantitative congruence between the energies associated with the power density of the photon emissions and the physicochemical variables involved with their reduction. These results indicate that photon emissions coupled with classic biomolecular pathways and processes may behave as intra- and inter-cellular sources of information that could control the complex dynamics of cells. The effect may not depend upon locality but exhibit non-local characteristics.
169

The use of linear filtering in gravity and magnetic problems.

Lim, Sze Hian January 1972 (has links)
No description available.
170

Effects of electric and magnetic fields on selected physiological and reproductive parameters of American kestrels

Fernie, Kimberly J. January 1998 (has links)
Birds nest under electric and magnetic fields (EMFs) generated by transmission liners which may affect their reproductive success and/or melatonin governing their circadian and circannual cycles. Over two years, captive kestrels were used to determine whether EMFs affect their plasma melatonin concentrations and their reproductive success. EMFs were equivalent to that which wild kestrels are exposed to while nesting under 735 kV transmission fines, and daily exposure used in the captive study (88--98% time budget) was potentially equivalent to that of wild kestrels (90% X, 80% X). Captive kestrels were housed in control or EMF conditions to determine short-term (one season; S-EMF) and longer-term EMF (two seasons; L-EMF) effects. / Plasma melatonin in adult EMF males was suppressed at 42 d and elevated at 70 d of EMF exposure compared to controls. Melatonin levels in EMF males at mid-season were similar to controls at season's end, suggesting a seasonal phase-shift. Melatonin was suppressed in L-EMF fledgling birds but not in adult females or nudes (1995) at 70 d. Plasm melatonin, higher in adult males than females at 70 d post-pairing, was not directly associated with body mass changes in kestrels. / Captive EMF birds were more active and alert but groomed less often than controls. EMF exposure affected reproductive success of kestrels. Fertility and fledging success were higher, and hatching success lower in S-EMF clutches. Hatching success was higher, but fledging success lower in L-EMF clutches. In S-EMF clutches, mean egg volume and mass were greater, eggs had slightly more albumen but thinner eggshells, and embryos were larger than controls. L-EMF hatchlings were heavier than controls. / The melatonin results for male kestrels indicate that kestrels perceive EMFs as light, thus altering their photoperiod. Photoperiodic manipulations advance molt onset, which is associated with increased body mass in male kestrels. S-EMF males were heavier at 56 d of exposure when molt began, but this was unlikely related to feed intake winch was unchanged. EMF exposure had no effect on body mass and pectoral muscle scores of reproducing females. The sexually-dimorphic response in body mass and melatonin concentrations suggests that male kestrels may be more sensitive to EMF exposure than females.

Page generated in 0.0462 seconds