• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 217
  • 40
  • 27
  • 23
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 510
  • 510
  • 77
  • 50
  • 44
  • 44
  • 42
  • 40
  • 39
  • 38
  • 36
  • 36
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Magnetic field effects in phospholipid vesicles measured by light scattering

Eleiwa, M. M. January 1989 (has links)
No description available.
32

Studies of gyro-radiation and related phenomena in a magnetoplasma.

January 1992 (has links)
by Tong Shiu Sing Dominic. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1992. / Includes bibliographical references (leaves 242-245). / Acknowledgements --- p.iv / Abstract --- p.v / Chapter I --- Introduction --- p.1 / Chapter 1.1 --- A general review of the theory --- p.1 / Chapter 1.2 --- An outline of this thesis --- p.6 / Chapter II --- Dispersion surfaces of cold magnetoplasmas --- p.9 / Chapter 2.1 --- Meaning of dispersion surface and wavevector surface --- p.9 / Chapter 2.2 --- Dispersion surfaces of a two component electron-ion magnetoplasma --- p.13 / Chapter 2.3 --- Dispersion surfaces of a three component electron-ion-positron magnetoplasma --- p.35 / Chapter 2.4 --- Dispersion surfaces of a three component electron-ions magnetoplasma --- p.50 / Chapter 2.5 --- Doppler shifted wavevector surfaces (DWS) --- p.61 / Chapter A. --- Examples of DWS in an isotropic cold plasma --- p.61 / Chapter B. --- Examples of DWS in a cold magnetoplasma --- p.62 / Chapter 2.6 --- Dispersive surfaces of a moving magnetoplasma --- p.63 / Chapter III --- Evaluation of far field caused by a moving source --- p.72 / Chapter 3.1 --- Maxwell's equations and constitutive relations --- p.72 / Chapter 3.2 --- Calculation of far field by Lai and Chan's method --- p.75 / Chapter 3.3 --- Radiation energy flow --- p.85 / Chapter IV --- Controversy of Lai and Chan's method --- p.94 / Chapter 4.1 --- Origin of the controversy --- p.94 / Chapter 4.2 --- Evaluating the far field by the method of other authors --- p.97 / Chapter 4.3 --- "Comparsion of the fields found by Lai, Chan and other authors" --- p.100 / Chapter A. --- Comparing the far fields in an uniaxial non-dispersive medium --- p.101 / Chapter B. --- Comparing the far fields in an isotropic cold plasma --- p.104 / Chapter 4.4 --- Some remarks on the method of stationary phase --- p.109 / Chapter V --- Gyro-radiation in a cold magnetoplasma --- p.113 / Chapter 5.1 --- Introduction --- p.113 / Chapter 5.2 --- Radiation energy flux caused by a moving dipole in a magnetoplasma --- p.115 / Chapter 5.3 --- Radiation energy flux caused by a gyrating electron in a magnetoplasma --- p.135 / Chapter VI --- The ratio of emitted to received power in a magnetoplasma --- p.186 / Chapter 6.1 --- Introduction --- p.186 / Chapter 6.2 --- Methol of calculating the ratio of emitted to received power --- p.187 / Chapter 6.3 --- Numerical examples of the power ratio in a magnetoplasma --- p.191 / Chapter VII --- Evaluation of far field in a moving medium --- p.199 / Chapter 7.1 --- Introduction --- p.199 / Chapter 7.2 --- Far field expression in a moving medium --- p.200 / Chapter 7.3 --- Relation between Lai and Chan's far field and the far field in a moving medium --- p.206 / Chapter VIII --- Radiation in some moving media --- p.216 / Chapter 8.1 --- Introduction --- p.216 / Chapter 8.2 --- Radiation in a moving isotropic non- dispersive medium --- p.216 / Chapter 8.3 --- Radiation in a moving isotropic cold plasma --- p.223 / Chapter 8.4 --- Radiation in a moving cold magnetoplasma --- p.226 / Chapter IX --- Conclusions --- p.232 / Appendix A --- p.235 / Appendix B --- p.238 / Appendix C --- p.241 / References --- p.242
33

A study of the Hill-function solution to problems of propagation in stratified media

Dietrich, James L January 2010 (has links)
Digitized by Kansas Correctional Industries
34

Investigation of Zeeman splitting of 21 cm absorption lines

Shuter, W. L. H. January 1963 (has links)
No description available.
35

Magnetic Fields in the Milky Way and the Magellanic Clouds

Mao, Sui Ann January 2011 (has links)
This thesis is an observational investigation into the origin of large-scale coherent magnetic fields in the Milky Way and the Magellanic Clouds. I use Faraday rotation measure of both polarized extragalactic sources and that derived from diffuse polarized synchrotron emission as probes of interstellar magnetism. Rotation measure uniquely provides the magnetic field direction in the diffuse interstellar medium, which cannot be achieved using other observing techniques. Using extragalactic source rotation measures behind the Small Magellanic Cloud (SMC), I find a large-scale coherent magnetic field in this irregular galaxy, where the classic dynamo effect is expected to be weak. I suggest that the cosmic-ray driven dynamo, which relies heavily on cosmic ray pressure to generate poloidal fields could be in operation. By analyzing rotation measures derived from diffuse polarized emission from the Large Magellanic Cloud (LMC) simultaneously with rotation measures of 100 extragalactic sources behind it, I conclude that the LMC has a quadrupolar-type magnetic field structure, in accord with predictions from dynamo theories. However, the field amplification time scale of a classic dynamo is too long compared to frequent tidal-triggered star forming episodes experienced by the LMC which can prevent any large-scale coherent field from building up. I propose that the cosmic-ray driven dynamo, which has a much shorter amplification time scale than the classic dynamo, could be the origin of the observed coherent fields in the LMC. The dynamo theory predicts a symmetric vertical magnetic field across the galactic disk for Milky Way-type galaxies. However, based on rotation measures of 1,000 extragalactic sources toward the Galactic poles, I find a lack of vertical field symmetry across the Galactic mid-plane. I suggest that the observed RMs could be the superposition of a symmetric disk field and an anti-symmetric field produced by a separate dynamo effect in the Galactic halo. Furthermore, I demonstrate that existing Galactic halo magnetic field models cannot successfully reproduce extragalactic rotation measures at mid-Galactic latitudes in the second Galactic quadrant. I propose that halo fields consist of magnetic spirals could potentially account for the observed RM pattern. / Astronomy
36

The magnetic field evolution and cooling of superconducting strange stars

鄧敬來, Tang, King-loy. January 2000 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
37

Modification of x-ray tissue doses with strong magnetic fields

Borke, Michael Faison 08 1900 (has links)
No description available.
38

Convection and magnetoconvection problems in rapidly rotating spherical geometry

Mussa, Ali Ibrahim Al January 2000 (has links)
No description available.
39

Magnetic fields and electron trajectories at the end of a helical undulator

Craun, Daniel E. January 1990 (has links)
Thesis (M.S. in Physics)--Naval Postgraduate School, December 1990. / Thesis Advisor(s): Colson, William B. Second Reader: Burkirk, Fred Ramon. "December 1990." Description based on title screen as viewed on April 02, 2010. DTIC Descriptor(s): Input, coils, magnetic fields, models, theses, electrons, electron beams, free electron lasers, integration, tolerance, focusing, matching, trajectories, field equipment, winding, control DTIC Identifier(s): Electron trajectories, helical undulators, magnetic fields, theses. Author(s) subject terms: Includes bibliographical references (p. 76). Also available in print.
40

The evolution of neutron star magnetic fields /

Zhang, Chengmin. January 2000 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves [83]-90).

Page generated in 0.0954 seconds