• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 12
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Recommendations for improvement to the South African information technology curriculum: a case study of new higher certificate graduates' first year of employment

Panday, Annelee 05 1900 (has links)
Employment issues in South Africa (SA) are a significant problem. There are ongoing discussions revolving around the employability challenges facing South African graduates, particularly in the Information Technology (IT) sector. The preparedness of these IT graduates has been questioned with many looking towards skill sets and employability status while others have scrutinised the validity of the IT curriculum meeting industry needs. The research focuses on a case study of graduates from an accredited, private higher education institution in SA. The study followed a qualitative approach using questionnaires and interviews to understand the experiences of employers, employed graduates and recruitment personnel upon employment of the graduates. This study investigated, determined and confirmed recommendations to adapt the South African higher education IT curriculum to improve the productivity of IT graduates upon employment. / School of Computing / M. Sc. (Computing)
12

Multiple turbine wind power transfer system loss and efficiency analysis

Pusha, Ayana T. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A gearless hydraulic wind energy transfer system utilizes the hydraulic power transmission principles to integrate the energy of multiple wind turbines in a central power generation location. The gearless wind power transfer technology may replace the current energy harvesting system to reduce the cost of operation and increase the reliability of wind power generation. It also allows for the integration of multiple wind turbines to one central generation unit, unlike the traditional wind power generation with dedicated generator and gearbox. A Hydraulic Transmission (HT) can transmit high power and can operate over a wide range of torque-to-speed ratios, allowing efficient transmission of intermittent wind power. The torque to speed ratios illustrates the relationship between the torque and speed of a motor (or pump) from the moment of start to when full-load torque is reached at the manufacturer recommended rated speed. In this thesis, a gearless hydraulic wind energy harvesting and transfer system is mathematically modeled and verified by experimental results. The mathematical model is therefore required to consider the system dynamics and be used in control system development. Mathematical modeling also provided a method to determine the losses of the system as well as overall efficiency. The energy is harvested by a low speed-high torque wind turbine connected to a high fixed-displacement hydraulic pump, which is connected to hydraulic motors. Through mathematical modeling of the system, an enhanced understanding of the HTS through analysis was gained that lead to a highly efficient hydraulic energy transmission system. It was determined which factors significantly influenced the system operation and its efficiency more. It was also established how the overall system operated in a multiple wind turbine configuration. The quality of transferred power from the wind turbine to the generator is important to maintaining the systems power balance, frequency droop control in grid-connected applications, and to ensure that the maximum output power is obtained. A hydraulic transmission system can transfer large amounts of power and has more flexibility than a mechanical and electrical system. However high-pressure hydraulic systems have shown low efficiency in wind power transfer when interfaced with a single turbine to a ground-level generator. HT’s generally have acceptable efficiency at full load and drop efficiency as the loading changes, typically having a peak around 60%. The efficiency of a HT is dependent on several parameters including volumetric flow rate, rotational speed and torque at the pump shaft, and the pressure difference across the inlet and outlet of the hydraulic pump and motor. It has been demonstrated that using a central generation unit for a group of wind turbines and transferring the power of each turbine through hydraulic system increases the efficiency of the overall system versus one turbine to one central generation unit. The efficiency enhancement depends on the rotational speed of the hydraulic pumps. Therefore, it is proven that the multiple-turbine hydraulic power transfer system reaches higher efficiencies at lower rotational speeds. This suggests that the gearbox can be eliminated from the wind powertrains if multiple turbines are connected to the central generation unit. Computer simulations and experimental results are provided to quantify the efficiency enhancements obtained by adding the second wind turbine hydraulic pump to the system.
13

Modeling and control of hydraulic wind power transfer systems

Vaezi, Masoud January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Hydraulic wind power transfer systems deliver the captured energy by the blades to the generators differently. In the conventional systems this task is carried out by a gearbox or an intermediate medium. New generation of wind power systems transfer the captured energy by means of high-pressure hydraulic fluids. A hydraulic pump is connected to the blades shaft at a high distance from the ground, in nacelle, to pressurize a hydraulic flow down to ground level equipment through hoses. Multiple wind turbines can also pressurize a flow sending to a single hose toward the generator. The pressurized flow carries a large amount of energy which will be transferred to the mechanical energy by a hydraulic motor. Finally, a generator is connected to the hydraulic motor to generate electrical power. This hydraulic system runs under two main disturbances, wind speed fluctuations and load variations. Intermittent nature of the wind applies a fluctuating torque on the hydraulic pump shaft. Also, variations of the consumed electrical power by the grid cause a considerable load disturbance on the system. This thesis studies the hydraulic wind power transfer systems. To get a better understanding, a mathematical model of the system is developed and studied utilizing the governing equations for every single hydraulic component in the system. The mathematical model embodies nonlinearities which are inherited from the hydraulic components such as check valves, proportional valves, pressure relief valves, etc. An experimental prototype of the hydraulic wind power transfer systems is designed and implemented to study the dynamic behavior and operation of the system. The provided nonlinear mathematical model is then validated by experimental result from the prototype. Moreover, this thesis develops a control system for the hydraulic wind power transfer systems. To maintain a fixed frequency electrical voltage by the system, the generator should remain at a constant rotational speed. The fluctuating wind speed from the upstream, and the load variations from the downstream apply considerable disturbances on the system. A controller is designed and implemented to regulate the flow in the proportional valve and as a consequence the generator maintains its constant speed compensating for load and wind turbine disturbances. The control system is applied to the mathematical model as well as the experimental prototype by utilizing MATLAB/Simulink and dSPACE 1104 fast prototyping hardware and the results are compared.

Page generated in 0.1685 seconds