• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TRANSPORTABLE RANGE AUGMENTATION AND CONTROL SYSTEMS FOR MULTIPLE SHOT ENGAGEMENTS

Glenn, Tom, Chavez, Tomas, Toole, Michael T., Markwardt, Jack 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The Ballistic Missile Defense Organization (BMDO) is developing new Theater Missile Defense (TMD) weapon systems to defend against the rapidly expanding ballistic missile threat. The tactical ballistic missile threats include systems with range capabilities greater than 1000 kilometers. The development and testing of systems such as the Patriot Advanced Capability 3 (PAC-3), the Theater High Altitude Area Defense (THAAD), Navy Area Defense, and the System Integration Tests (SIT) to address the interoperability of this family of systems, will require the development of the Transportable Range Augmentation and Control System for Multiple Shot Engagements (TRACS - MSE). Congress has mandated that these systems be tested in multiple simultaneous engagements. These systems will be tested at several ranges to meet all the developmental and operational testers' needs. Potential range locations include White Sands Missile Range (WSMR), Kwajalein Missile Range (KMR), the Pacific Missile Range Facility (PMRF) and the Gulf Range at Eglin Air Force Base. Due to the long distances separating the target launch site and the interceptor site, the TRACS - MSE will be required at multiple sites for each range used. To be cost effective, transportable systems should be developed to augment existing capabilities. Advances in Global Positioning System (GPS) technology and high data rate receivers make telemetry based solutions attractive. This article will address the requirements for range safety, for Time, Space, Position Information (TSPI) collection and processing requirements to support a TRACS - MSE capability.
2

How to optimize joint theater ballistic missile defense

Diehl, Douglas D. 03 1900 (has links)
Approved for public release, distribution is unlimited / Many potential adversaries seek, or already have theater ballistic missiles capable of threatening targets of interest to the United States. The U.S. Missile Defense Agency and armed forces are developing and fielding missile interceptors carried by many different platforms, including ships, aircraft, and ground units. Given some exigent threat, the U.S. must decide where to position defensive platforms and how they should engage potential belligerent missile attacks. To plan such defenses, the Navy uses its Area Air Defense Commander (AADC) system afloat and ashore, the Air Force has its Theater Battle Management Core Systems (TBMCS) used in air operations centers, and the Missile Defense Agency uses the Commander's Analysis and Planning Simulation (CAPS). AADC uses a server farm to exhaustively enumerate potential enemy launch points, missiles, threatened targets, and interceptor platform positions. TBMCS automates a heuristic cookie-cutter overlay of potential launch fans by defensive interceptor envelopes. Given a complete missile attack plan and a responding defense, CAPS assesses the engagement geometry and resulting coverage against manually prepared attack scenarios and defense designs. We express the enemy courses of action as a mathematical optimization to maximize expected damage, and then show how to optimize our defensive interceptor pre-positioning to minimize the maximum achievable expected damage. We can evaluate exchanges where each of our defending platform locations and interceptor commitments are hidden from, or known in advance by the attacker. Using a laptop computer we can produce a provably optimal defensive plan in minutes. / Lieutenant, United States Navy
3

TELEMETRY CHALLENGES FOR BALLISTIC MISSILE TESTING IN THE CENTRAL PACIFIC

Markwardt, Jack, LaPoint, Steve 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / The Ballistic Missile Defense Organization (BMDO) is developing new Theater Missile Defense (TMD) and National Missile Defense (NMD) weapon systems to defend against the expanding ballistic missile threat. In the arms control arena, theater ballistic missile threats have been defined to include systems with reentry velocities up to five kilometers per second and strategic ballistic missile threats have reentry velocities that exceed five kilometers per second. The development and testing of TMD systems such as the Army Theater High Altitude Area Defense (THAAD) and the Navy Area Theater Ballistic Missile Defense (TBMD) Lower Tier, and NMD systems such as the Army Exoatmospheric Kill Vehicle and the Army Ground-Based Radar, pose exceptional challenges that stem from extreme acquisition range and high telemetry data transfer rates. Potential Central Pacific range locations include U.S. Army Kwajalien Atoll/Kwajalein Missile Range (USAKA/KMR) and the Pacific Missile Range Facility (PMRF) with target launches from Vandenberg Air Force Base, Wake Island, Aur Atoll, Johnston Island, and, possibly, an airborne platform. Safety considerations for remote target launches dictate utilization of high-data-rate, on-board instrumentation; technical performance measurement dictates transmission of focal plane array data; and operational requirements dictate intercepts at exoatmospheric altitudes and long slant ranges. The high gain, high data rate, telemetry acquisition requirements, coupled with loss of the upper S-band spectrum, may require innovative approaches to minimize electronic noise, maximize telemetry system gain, and fully utilize the limited S-band telemetry spectrum. The paper will address the emerging requirements and will explore the telemetry design trade space.
4

Genetic algorithm design and testing of a random element 3-D 2.4 GHZ phased array transmit antenna constructed of commercial RF microchips

Esswein, Lance C. 06 1900 (has links)
Approved for public release, distribution is unlimited / The United States Navy requires radical and innovative ways to model and design multifunction phased array radars. This thesis puts forth the concept that Genetic Algorithms, computer simulations that mirror the natural selection process to develop creative solutions to complex problems, would be extremely well suited in this application. The capability of a Genetic Algorithm to predict adequately the behavior of an array antenna with randomly located elements was verified with expected results through the design, construction, development and evaluation of a test-bed array. The test-bed array was constructed of commercially available components, including a unique and innovative application of a quadrature modulator microchip used in commercial communications applications. Corroboration of predicted beam patterns from both Genetic Algorithm and Method of Moments calculations was achieved in anechoic chamber measurements conducted with the test-bed array. Both H-plane and E-plane data runs were made with several phase steered beams. In all cases the measured data agreed with that predicted from both modeling programs. Although time limited experiments to beam forming and steering with phase shifting, the test-bed array is fully capable of beam forming and steering though both phase shifting and amplitude tapering. / Outstanding Thesis / Lieutenant Commander, United States Navy

Page generated in 0.1145 seconds