• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cosmology with power spectrum measurements from galaxy surveys

Macaulay, Edward Robert Mark January 2012 (has links)
The nature of dark matter and dark energy are currently two of the most important questions in cosmology. In this thesis, we consider studying the dark universe with the redshifts and peculiar velocities of galaxies. In the first half of the thesis, we analyse current peculiar velocity measurements of the bulk flow of our local volume to estimate the underlying dark matter power spectrum. In the second half of the thesis, we consider the prospects for measuring dark matter and dark energy with future galaxy redshift surveys, particularly via redshift space distortions. Fundamentally, bulk flow measurements and redshift space distortions are both sensitive probes of the power spectrum and growth rate of cosmic structure. In the final chapter, we directly compare power spectrum measurements with both methods.
2

Tests of the Planck cosmology at high and low redshifts

Lemos Portela, Pablo January 2019 (has links)
The inflationary ΛCDM cosmology currently provides an accurate description of the Universe. It has been tested using several observational techniques over a wide redshift range, and it provides a good fit to most of them. In addition, it is a surprisingly economical model, requiring only six parameters to characterize the background cosmology and its fluctuations. In this model, the Universe is dominated by a cosmological constant Λ driving an accelerated expansion, and by cold dark matter. The strongest constraints on parameters to date come from observations of the temperature and polarization anisotropies of the cosmic microwave background measured by the Planck satellite. There are, however, indications of features in the Planck power spectra, possible differences with high redshift ground-based CMB experiments, and 'tensions' between Planck and low redshift measurements of the Hubble constant and weak gravitational lensing. In this thesis, we review possible tensions and extensions to the Planck cosmology, at both high and low redshifts. We begin with the high redshift analysis, using the Planck data to test models which introduce oscillatory features in the primordial power spectrum. We also study possible departures from slow roll inflation using the generalized slow-roll formalism, which allows for order unity deviations. Although we find models which give marginal improvements on the temperature or polarization power spectra, the combination of temperature and polarization is found to be consistent with a featureless power-law primordial spectrum. We then focus on measurements of the polarized CMB sky by the South Pole Telescope collaboration, who report tension between their measurements and the ΛCDM cosmology and with the cosmological parameters determined by Planck. We find evidence of a high χ2 in the SPTpol spectra which is unlikely to be cosmological. We report consistency between the Planck and SPTpol polarization spectra over the multipoles accessible to Planck (l ∼< 1500). We then investigate tension at low redshifts. We begin with weak gravitational lensing in which a number of surveys have suggested that the amplitude of the fluctuation spectra is lower than the Planck value. We review the small-angle approximations commonly used in galaxy weak lensing analyses and their effect on cosmological parameters. We find that these approximations are perfectly adequate for present and near future experiments. We find internal inconsistencies in the recent KiDS-450 analysis involving photometric redshifts and the KiDS covariance matrix at large scales. Finally, we investigate the difference between measurements of the present day expansion rate of the Universe. We apply a novel parameterization of the inverse distance ladder to determine the present date value of the Hubble parameter H0, which assumes General Relativity but makes no further assumptions about systematic errors or the nature of dark energy. Our analysis uses baryon acoustic oscillation data and Type Ia Supernovae to constrain the expansion history assuming a value of the sound horizon determined from the CMB. Our results are in tension with recent direct determinations of H0. We conclude that this tension, if real, cannot be solved by modifications of the ΛCDM model at late times. Instead, we would require a modification of the theory at early times which reduces the sound horizon. We conclude that at this time there is no compelling evidence that conflicts with the ΛCDM cosmology either at low or at high redshifts.
3

Dark energy and the inhomogeneous universe

Bull, Philip J. January 2013 (has links)
In this thesis, I study the relativistic effects of matter inhomogeneities on the accelerating expansion of the Universe. The acceleration is often taken to be caused by the presence of an exotic fluid called Dark Energy, or else a non-zero 'cosmological constant' term in the field equations of General Relativity. I consider whether this result could instead be an artefact caused by using an incorrect model to interpret observations. The standard 'concordance' cosmological model assumes the Cosmological Principle, which states that the matter distribution on large scales is homogeneous. One possibility is that correction terms appear in the field equations when small-scale inhomogeneities are smoothed over to produce this homogeneous model. These 'backreaction' effects could affect the dynamics of the spacetime, causing an apparent acceleration. I clarify the relationship between acceleration of the averaged spacetime and acceleration inferred from observable quantities, and show that they are closely related in statistically-homogeneous spacetimes. Another possibility is that the Universe could be inhomogeneous on large scales. If there was a large ‘void’, with us at the centre, the lensing of light by the void could reproduce the observations that imply cosmic acceleration. I show that a popular class of void models, based on spherically-symmetric Lemaitre-Tolman-Bondi spacetimes, are unable to simultaneously fit a selection of observational data, thus effectively ruling-out this possibility. These data include the Kinematic Sunyaev-Zel'dovich (KSZ) effect, which is a distortion/shift of the Cosmic Microwave Background (CMB) frequency spectrum caused by the Compton scattering of photons by hot gas in galaxy clusters. This, and other distortions of the CMB frequency spectrum, are sensitive to the degree of anisotropy in the CMB about a scattering cluster. I suggest tests involving these observables that exploit the strong link between isotropy and homogeneity to (a) distinguish between different causes of a deviation from spatial flatness on the horizon scale, and (b) potentially confirm the Cosmological Principle using observations. Finally, I describe a novel Bayesian CMB component separation method for extracting the Sunyaev-Zel'dovich signal of clusters from CMB sky maps.
4

Inhomogeneous cosmology : an answer to the Dark Matter and Dark Energy problems? / Cosmologie inhomogène : une réponse aux problèmes de la matière noire et de l'énergie noire ?

Alles, Alexandre 22 September 2014 (has links)
Le Modèle Standard de la cosmologie décrit la formation des structures à grande échelle dans l'Univers récent dans un cadre quasi–newtonien. Ce modèle requiert la présence de composantes inconnues, la Matière Noire et l'Énergie Noire, afin de vérifier correctement les observations. Ces deux quantités représentent à elles seules près de 95% du contenu de l'Univers. Bien que ces composantes sombres soient activement recherchées par la communauté scientifique, il existe plusieurs alternatives qui tentent de traiter le problème des structures à grande échelle. Les théories inhomogènes décrivent l'impact des fluctuations cinématiques sur le comportement global de l'Univers. D'autres théories proposent également d'aller au-delà de la relativité générale. Durant cette thèse, j'ai mis au point des éléments clés d'une théorie lagrangienne totalement relativiste de la formation des structures. Supposant un feuilletage particulier de l'espace–temps j'ai résolu le système d'équations du premier ordre afin d'obtenir des solutions décrivant l'évolution de la matière dans un espace à la géométrie perturbée. J'ai également développé un schéma de résolution pour les ordres supérieurs de perturbation ainsi que leurs équivalent newtoniens. Une autre partie de ce travail de thèse consiste en le développement de quelques applications directes : la description d'un Univers silencieux ou l'hypothèse de courbure de Weyl et le problème de 'entropie gravitationnelle. Les objectifs à plus ou moins court terme seraient d'obtenir la description d'observables physiques and le développement d'autres applications. Cette étape de développement sera une interaction entre approches théorique et numérique et requerra de se rapprocher fortement des observateurs / The standard model of cosmology describes the formation of large scale structures in the late Universe within a quasi–Newtonian theory. This model requires the presence of unknown compounds of the Universe, Dark Matter and Dark Energy, to properly fit the observations. These two quantities, according to the Standard Model, represent almost 95% of the content of the Universe. Although the dark components are searched for by the scientific community, there exist several alternatives which try to deal with the problem of the large scale structures. Inhomogeneous theories describe the impact of the kinematical fluctuations on the global behaviour of the Universe. Or some theories proposed to go beyond general relativity. During my Ph.D. thesis, I developed key–elements of a fully relativistic Lagrangian theory of structure formation. Assuming a specific space–time slicing, I solved the first order system of equations to obtain solutions which describe the matter evolution within the perturbed geometry, and I developed higher order schemes and their correspondences with the Lagrangian perturbation solutions in the Newtonian approach. I also worked on some applications of these results like the description of a silent Universe or the Weyl curvature hypothesis and the problem of gravitational entropy. Further objectives are the description of physical observables and the development of direct applications. Next step of the development is an interaction between theoretical and numerical approaches, a study which would require strong cooperation with observers

Page generated in 0.0594 seconds