• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 65
  • 65
  • 65
  • 63
  • 30
  • 30
  • 20
  • 16
  • 15
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Generalizações do movimento browniano e suas aplicações à física e a finanças /

Bessada, Dennis Fernandes Alves. January 2005 (has links)
Orientador: Gerson Francisco / Banca: Victo dos Santos Filho / Banca: Fernando Manoel Ramos / Resumo: Realizamos neste trabalho uma exposição geral da Teoria do Movimento Browniano, desde suas primeiras observações, feitas no âmbito da Biologia, até sua completa descrição seundo as leis da Mecânica estatística, formulação esta efetuada por Einstein em 1905. Com base nestes princípios físicos analisamos a Teoria do Movimento Browniano de Einstein como sendo um processo estocástico, o que permite sua generalização para um processo de Lévy. Fazemos uma exposição da Teoria de Lévy, e aplicamo-la em seguida na análise de dados provenientes do índice IBOVESPA. Camparamos os resultados com as distribuições empíricas e a modelada via distribuição gaussiana, demonstrando efetivamente que a série financeira analisada apresenta um comportamento não-gaussiano. / Abstracts: We review in this work the foundations of the Theory of Brownian Motion, from the first observations made in Biology to its complete description according to the laws of Statistical Mechanics performed by einstein in 1905. Afterwards we discuss the Einstein's Theory of Brownian Motion as a stochastic process, since this connection allows its generalization to a Lévy process. After a brief review of Lévy Theory we analyse IBOVESPA data within this framework. We compare the outcomes with the empirical and gaussian distributions, showing effectively that the analyzed financial series behaves exactly as a non-gaussian stochastic process. / Mestre
22

Signatures of Gaussian processes and SLE curves

Boedihardjo, Horatio S. January 2014 (has links)
This thesis contains three main results. The first result states that, outside a slim set associated with a Gaussian process with long time memory, paths can be canonically enhanced to geometric rough paths. This allows us to apply the powerful Universal Limit Theorem in rough path theory to study the quasi-sure properties of the solutions of stochastic differential equations driven by Gaussian processes. The key idea is to use a norm, invented by B. Hambly and T.Lyons, which dominates the p-variation distance and the fact that the roughness of a Gaussian sample path is evenly distributed over time. The second result is the almost-sure uniqueness of the signatures of SLE kappa curves for kappa less than or equal to 4. We prove this by first expressing the Fourier transform of the winding angle of the SLE curve in terms of its signature. This formula also gives us a relation between the expected signature and the n-point functions studied in the SLE and Statistical Physics literature. It is important that the Chordal SLE measure in D is supported on simple curves from -1 to 1 for kappa between 0 and 4, and hence the image of the curve determines the curve up to reparametrisation. The third result is a formula for the expected signature of Gaussian processes generated by strictly regular kernels. The idea is to approximate the expected signature of this class of processes by the expected signature of their piecewise linear approximations. This reduces the problem to computing the moments of Gaussian random variables, which can be done using Wick’s formula.
23

Topics on backward stochastic differential equations : theoretical and practical aspects

Lionnet, Arnaud January 2013 (has links)
This doctoral thesis is concerned with some theoretical and practical questions related to backward stochastic differential equations (BSDEs) and more specifically their connection with some parabolic partial differential equations (PDEs). The thesis is made of three parts. In the first part, we study the probabilistic representation for a class of multidimensional PDEs with quadratic nonlinearities of a special form. We obtain a representation formula for the PDE solution in terms of the solutions to a Lipschitz BSDE. We then use this representation to obtain an estimate on the gradient of the PDE solutions by probabilistic means. In the course of our analysis, we are led to prove some results for the associated multidimensional quadratic BSDEs, namely an existence result and a partial uniqueness result. In the second part, we study the well-posedness of a very general quadratic reflected BSDE driven by a continuous martingale. We obtain the comparison theorem, the special comparison theorem for reflected BSDEs (which allows to compare the increasing processes of two solutions), the uniqueness and existence of solutions, as well as a stability result. The comparison theorem (from which uniqueness follows) and the special comparison theorem are obtained through natural techniques and minimal assumptions. The existence is based on a perturbative procedure, and holds for a driver whis is Lipschitz, or slightly-superlinear, or monotone with arbitrary growth in y. Finally, we obtain a stability result, which gives in particular a local Lipschitz estimate in BMO for the martingale part of the solution. In the third and last part, we study the time-discretization of BSDEs having nonlinearities that are monotone but with polynomial growth in the primary variable. We show that in that case, the explicit Euler scheme is likely to diverge, while the implicit scheme converges. In fact, by studying the family of θ-schemes, which are mixed explicit-implicit, θ characterizing the degree of implicitness, we find that the scheme converges when the implicit component is dominant (θ ≥ 1/2 ). We then propose a tamed explicit scheme, which converges. We show that the implicit-dominant schemes with θ > 1/2 and our tamed explicit scheme converge with order 1/2 , while the trapezoidal scheme (θ = 1/2) converges with order 7/4.
24

Order book models, signatures and numerical approximations of rough differential equations

Janssen, Arend January 2012 (has links)
We construct a mathematical model of an order driven market where traders can submit limit orders and market orders to buy and sell securities. We adapt the notion of no free lunch of Harrison and Kreps and Jouini and Kallal to our setting and we prove a no-arbitrage theorem for the model of the order driven market. Furthermore, we compute signatures of order books of different financial markets. Signatures, i.e. the full sequence of definite iterated integrals of a path, are one of the fundamental elements of the theory of rough paths. The theory of rough paths provides a framework to describe the evolution of dynamical systems that are driven by rough signals, including rough paths based on Brownian motion and fractional Brownian motion (see the work of Lyons). We show how we can obtain the solution of a polynomial differential equation and its (truncated) signature from the signature of the driving signal and the initial value. We also present and analyse an ODE method for the numerical solution of rough differential equations. We derive error estimates and we prove that it achieves the same rate of convergence as the corresponding higher order Euler schemes studied by Davie and Friz and Victoir. At the same time, it enhances stability. The method has been implemented for the case of polynomial vector fields as part of the CoRoPa software package which is available at http://coropa.sourceforge.net. We describe both the algorithm and the implementation and we show by giving examples how it can be used to compute the pathwise solution of stochastic rough differential equations driven by Brownian rough paths and fractional Brownian rough paths.
25

Stochastic population oscillators in ecology and neuroscience

Lai, Yi Ming January 2012 (has links)
In this thesis we discuss the synchronization of stochastic population oscillators in ecology and neuroscience. Traditionally, the synchronization of oscillators has been studied in deterministic systems with various modes of synchrony induced by coupling between the oscillators. However, recent developments have shown that an ensemble of uncoupled oscillators can be synchronized by a common noise source alone. By considering the effects of noise-induced synchronization on biological oscillators, we are able to explain various biological phenomena in ecological and neurobiological contexts - most importantly, the long-observed Moran effect. Our formulation of the systems as limit cycle oscillators arising from populations of individuals, each with a random element to its behaviour, also allows us to examine the interaction between an external noise source and this intrinsic stochasticity. This provides possible explanations as to why in ecological systems large-amplitude cycles may not be observed in the wild. In neural population oscillators, we were able to observe not just synchronization, but also clustering in some pa- rameter regimes. Finally, we are also able to extend our methods to include coupling in our models. In particular, we examine the competing effects of dispersal and extrinsic noise on the synchronization of a pair of Rosenzweig-Macarthur predator-prey systems. We discover that common environmental noise will ultimately synchronize the oscillators, but that the approach to synchrony depends on whether or not dispersal in the absence of noise supports any stable asynchronous states. We also show how the combination of correlated (shared) and uncorrelated (unshared) noise with dispersal can lead to a multistable steady-state probability density. Similar analysis on a coupled system of neural oscillators would be an interesting project for future work, which, among other future directions of research, is discussed in the concluding section of this thesis.
26

Bayesian analysis of stochastic point processes for financial applications

Probst, Cornelius January 2013 (has links)
A recent application of point processes has emerged from the electronic trading of financial assets. Many securities are now traded on purely electronic exchanges where demand and supply are aggregated in limit order books. Buy and sell trades in the asset as well as quote additions and cancellations can then be interpreted as events that not only determine the shape of the order book, but also define point processes that exhibit a rich internal structure. A large class of such point processes are those driven by a diffusive intensity process. A flexible choice with favourable analytic properties is a Cox-Ingersoll-Ross (CIR) diffusion. We adopt a Bayesian perspective on the statistical inference for these doubly stochastic processes, and focus on filtering the latent intensity process. We derive analytic results for the moment generating function of its posterior distribution. This is achieved by solving a partial differential equation for a linearised version of the filtering equation. We also establish an efficient and simple numerical evaluation of the posterior mean and variance of the intensity process. This relies on extending an equivalence result between a point process with CIR-intensity and a partially observed population process. We apply these results to empirical datasets from foreign exchange trading. One objective is to assess whether a CIR-driven point process is a satisfactory model for the variations in trading activity. This is answered in the negative, as sudden bursts of activity impair the fit of any diffusive intensity model. Controlling for such spikes, we conclude with a discussion of the stochastic control of a market making strategy when the only information available are the times of buy and sell trades.
27

Pricing exotic options using improved strong convergence

Schmitz Abe, Klaus E. January 2008 (has links)
Today, better numerical approximations are required for multi-dimensional SDEs to improve on the poor performance of the standard Monte Carlo integration. With this aim in mind, the material in the thesis is divided into two main categories, stochastic calculus and mathematical finance. In the former, we introduce a new scheme or discrete time approximation based on an idea of Paul Malliavin where, for some conditions, a better strong convergence order is obtained than the standard Milstein scheme without the expensive simulation of the Lévy Area. We demonstrate when the conditions of the 2−Dimensional problem permit this and give an exact solution for the orthogonal transformation (θ Scheme or Orthogonal Milstein Scheme). Our applications are focused on continuous time diffusion models for the volatility and variance with their discrete time approximations (ARV). Two theorems that measure with confidence the order of strong and weak convergence of schemes without an exact solution or expectation of the system are formally proved and tested with numerical examples. In addition, some methods for simulating the double integrals or Lévy Area in the Milstein approximation are introduced. For mathematical finance, we review evidence of non-constant volatility and consider the implications for option pricing using stochastic volatility models. A general stochastic volatility model that represents most of the stochastic volatility models that are outlined in the literature is proposed. This was necessary in order to both study and understand the option price properties. The analytic closed-form solution for a European/Digital option for both the Square Root Model and the 3/2 Model are given. We present the Multilevel Monte Carlo path simulation method which is a powerful tool for pricing exotic options. An improved/updated version of the ML-MC algorithm using multi-schemes and a non-zero starting level is introduced. To link the contents of the thesis, we present a wide variety of pricing exotic option examples where considerable computational savings are demonstrated using the new θ Scheme and the improved Multischeme Multilevel Monte Carlo method (MSL-MC). The computational cost to achieve an accuracy of O(e) is reduced from O(e−3) to O(e−2) for some applications.
28

Recent modelling frameworks for systems of interacting particles

Franz, Benjamin January 2014 (has links)
In this thesis we study three different modelling frameworks for biological systems of dispersal and combinations thereof. The three frameworks involved are individual-based models, group-level models in the form of partial differential equations (PDEs) and robot swarms. In the first two chapters of the thesis, we present ways of coupling individual based models with PDEs in so-called hybrid models, with the aim of achieving improved performance of simulations. Two classes of such hybrid models are discussed that allow an efficient simulation of multi-species systems of dispersal with reactions, but involve individual resolution for certain species and in certain parts of a computational domain if desired. We generally consider two types of example systems: bacterial chemotaxis and reaction-diffusion systems, and present results in the respective application area as well as general methods. The third chapter of this thesis introduces swarm robotic experiments as an additional tool to study systems of dispersal. In general, those experiments can be used to mimic animal behaviour and to study the impact of local interactions on the group-level dynamics. We concentrate on a target finding problem for groups of robots. We present how PDE descriptions can be adjusted to incorporate the finite turning times observed in the robotic system and that the adjusted models match well with experimental data. In the fourth and last chapter, we consider interactions between robots in the form of hard-sphere collisions and again derive adjusted PDE descriptions. We show that collisions have a significant impact on the speed with which the group spreads across a domain. Throughout these two chapters, we apply a combination of experiments, individual-based simulations and PDE descriptions to improve our understanding of interactions in systems of dispersal.
29

Effective design of marine reserves : incorporating alongshore currents, size structure, and uncertainty

Reimer, Jody January 2013 (has links)
Marine populations worldwide are in decline due to anthropogenic effects. Spatial management via marine reserves may be an effective conservation method for many species, but the requisite theory is still underdeveloped. Integrodifference equation (IDE) models can be used to determine the critical domain size required for persistence and provide a modelling framework suitable for many marine populations. Here, we develop a novel spatially implicit approximation for the proportion of individuals lost outside the reserve areas which consistently outperforms the most common approximation. We examine how results using this approximation compare to the existing IDE results on the critical domain size for populations in a single reserve, in a network of reserves, in the presence of alongshore currents, and in structured populations. We find that the approximation consistently provides results which are in close agreement with those of an IDE model with the advantage of being simpler to convey to a biological audience while providing insights into the significance of certain model components. We also design a stochastic individual based model (IBM) to explore the probability of extinction for a population within a reserve area. We use our spatially implicit approximation to estimate the proportion of individuals which disperse outside the reserve area. We then use this approximation to obtain results on extinction using two different approaches, which we can compare to the baseline IBM; the first approach is based on the Central Limit Theorem and provides efficient simulation results, and the second modifies a simple Galton-Watson branching process to include loss outside the reserve area. We find that this spatially implicit approximation is also effective in obtaining results similar to those produced by the IBM in the presence of both demographic and environmental variability. Overall, this provides a set of complimentary methods for predicting the reserve area required to sustain a population in the presence of strong fishing pressure in the surrounding waters.
30

Prediction of homing pigeon flight paths using Gaussian processes

Mann, Richard Philip January 2010 (has links)
Studies of avian navigation are making increasing use of miniature Global Positioning Satellite devices, to regularly record the position of birds in flight with high spatial and temporal resolution. I suggest a novel approach to analysing the data sets pro- duced in these experiments, focussing on studies of the domesticated homing pigeon (Columba Livia) in the local, familiar area. Using Gaussian processes and Bayesian inference as a mathematical foundation I develop and apply a statistical model to make quantitative predictions of homing pigeon flight paths. Using this model I show that pigeons, when released repeatedly from the same site, learn and follow a habitual route back to their home loft. The model reveals the rate of route learning and provides a quantitative estimate of the habitual route complete with associated spatio-temporal covariance. Furthermore I show that this habitual route is best described by a sequence of isolated waypoints rather than as a continuous path, and that these waypoints are preferentially found in certain terrain types, being especially rare within urban and forested environments. As a corollary I demonstrate an extension of the flight path model to simulate ex- periments where pigeons are released in pairs, and show that this can account for observed large scale patterns in such experiments based only on the individual birds’ previous behaviour in solo flights, making a successful quantitative prediction of the critical value associated with a non-linear behavioural transition.

Page generated in 0.1643 seconds