• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O gerador térmico como analisador de Propriedades térmicas a partir da Harmônica pura / The thermal generator as thermal properties Analyzer through the pure harmonic

Silva, Tássio Alessandro Borges da 21 February 2014 (has links)
Made available in DSpace on 2015-05-08T14:59:55Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2733979 bytes, checksum: 31a7b17d4e55b0b76104e86521d477c4 (MD5) Previous issue date: 2014-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work presents a new method for determination of thermal properties of materials. As it makes use of two different materials at the time of measurement, it is a differential instrument. In the proposed method a thermal wave is generated at one end of the material and measured the temperature at the other end. Based on the relationship between the input and output waves is possible to obtain the thermal properties of the material. The equation of heat conduction in materials was deduced and simulated, to determine the temperature at any point of the materials. In the experimental setup two thermoelectric modules were used along with a PID control to generate a thermal wave and a module to maintain a constant temperature. The LabVIEW platform together with the cFP-2000 was used for data acquisition and control. Type T thermocouples were used as temperature sensors. The materials used in the experiments (ASTM A36 Steel, Nylon and Quartz) have their thermal properties provided by the manufacturers, these values were used as reference for validation. The developed instrument generates waves with amplitudes between 1 and 3 ° C and periods from 100 to 10000 seconds. To solve the problem of determining the temperature in the material, the analogy between thermal and electrical systems was applied, a technique called the Method of Simulation Network. The results were divided into three parts: The first introduces thermal sinusoid generated by the thermal generator and the second compares the theoretical values to the measured values of temperature between the two materials and the third displays the value of thermal conductivity measured by the instrument. The results were positive and indicate the feasibility of the method and instrument. / Neste trabalho é apresentado um novo método para determinação das propriedades térmicas dos materiais. Como faz uso de dois materiais distintos no momento da medição, trata-se de um instrumento diferencial. No método proposto é gerada uma onda térmica em uma extremidade do material e medida a temperatura de saída na outra extremidade. A partir da relação entre as ondas de entrada e saída é possível obter a condutividade térmica do material. A equação da condução de calor nos materiais foi deduzida e simulada, permitindo determinar a temperatura em qualquer ponto dos materiais. Na montagem experimental foram utilizados dois módulos termoelétricos com controle PID para gerar uma onda térmica e um módulo para manter a temperatura constante. A plataforma LabVIEW em conjunto com o cFP-2000 foram utilizados para aquisição de dados e controle. Foram empregados termopares do tipo T como sensores de temperatura. Os materiais utilizados nos experimentos (Aço ASTM A36, Nylon e Quartzo) têm suas propriedades térmicas previstas pelos fabricantes. Esses valores foram utilizados como referência para a validação. O instrumento desenvolvido gera ondas térmicas com amplitudes entre 1 e 3 ºC e períodos de 100 a 10000 segundos. Para solução do problema de determinação da temperatura nos materiais aplicou-se o Método de Simulação de Rede, que aplica uma analogia entre sistemas elétricos e térmicos. Os resultados foram divididos em três partes: a primeira apresenta a senóide térmica gerada pelo Gerador Térmico; a segunda compara os valores teóricos com os valores medidos da temperatura entre os dois materiais; e a terceira apresenta o valor da condutividade térmica medida pelo instrumento. Os resultados foram positivos e indicam a viabilidade do método e do instrumento.
2

Návrh tepelného okruhu teplárny s kogenerační jednotkou 1600kWe / Heat layout of heating power plant with cogeneration unit 1600kWe

Buřil, Tomáš January 2013 (has links)
Main target of this master´s thesis is a projection of a thermal circuit of a heating plant, which uses waste heat of a cogeneration unit with power of 1600 kWe. Electric power of a cogeneration unit is supplemented with an electric power produced from a waste heat. All heat is further used for heating in a warm water heating system. Within this thesis are executed projections of a thermal circuit of a heating plant, choice of particular devices, determination of a thermal power of devices and also determination of conditions of particular heat – transferring substances. Furthermore, design of particular devices is made, mainly for basic dimensions and heat transfer.
3

Výpočet chlazení asynchronního stroje pomocí programu Ansys CFX / Calculation of the cooling of the asynchronous machine ANSYS CFX

Horálek, Lukáš January 2017 (has links)
The issue this master’s thesis discusses the cooling synchronous machines. Specifically, the calculation of cooling induction motor using the finite volume method. Using Autodesk Inventor will create a 3D model of a real electric machine, ie asynchronous motor and then ANSYS WORKBENCH perform system analysis CFX, based on the finite volume method. Furthermore, we realize the air speed measurements on a particular machine and the individual results obtained by measuring and calculating the actual compared with each other. The master’s thesis also deals marginally with closely related to it. For the same machine model, we apply the calculation of the temperature fields using the finite volume method and them perform a thermal analysis. Next, we can carry out the measurement of the temperature on the motor itself and calculate the measured values and the measured compare each other.
4

Pohon pro bezucpávkové čerpadlo / Drive for seal-less pump

Pruša, Radomír January 2018 (has links)
The aim of this thesis is to design a drive for seal-less centrifugal pump. Designed motor with axial magnetic flux is a double-sided structure with an internal coreless stator. The construction of the seal-less pump is based on a patent no. 17818, which was created at the Victor Kaplan Department of Fluid Engineering BUT. Potential use of this assembly is mainly in the food industry, possibly in the field of chemically aggressive liquids. The whole design is based on coordination between analytical equations and finite element method of the software ANSYS Maxwell. The temperature ratios inside the motor were investigated when cooling with air by the iterative solution of thermal circuit. The work includes research on the topic of constructing the axial machines and their applications in pumps. A comprehensive specification of the entire seal-less centrifugal pump is given in Chapter 4.
5

Kogenerační jednotky pro RD – hodnocení a simulace / The Cogeneration Units for Family House - Evaluation and Simulation

Martynek, Václav January 2013 (has links)
Master’s thesis deals with cogeneration units of low power that are used for heating of buildings and to cover the heat demand of small industrial enterprises. The introductory chapters are focusing on clarifying the principles of combined heat and power (CHP) as well as on the basic advantages and important indicators of CHP. The thesis presents a brief overview of cogeneration devices by type of primary units and also provides an overview of cogeneration units suitable for family houses that are currently available on the market. The text describes how to install and connect the cogeneration unit. The fourth chapter includes description of elemental thermal processes and possibility of heat transfer. The fifth chapter describes the thermal circuit model and calculation efficiency of a cogeneration unit. Thermal circuit consists of a cogeneration unit and a multivalent tank for hot water heating system and potable hot water system. The object of master’s thesis is to create a model of thermal circuit cogeneration units in a simulation program and a graphical user interface, that will allow a simple way to evaluate the operation of the cogeneration unit when changing the input parameters.

Page generated in 0.039 seconds