• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude des défauts liés à l'oxygène dans le silicium Czochralski destiné aux cellules solaires photovoltaïques – Influence des impuretés isovalentes / Study of the defects related to oxygen in Czochralski silicon destined to photovoltaic solar cells – Influence of isovalent impurities

Tanay, Florent 17 October 2013 (has links)
Ce travail a pour but de comprendre les effets de deux principaux défauts liés à l’oxygène, les complexes bore-oxygène et les donneurs thermiques, sur les propriétés électriques et photovoltaïques du silicium. Plus particulièrement, les interactions des impuretés isovalentes, connues pour modifier la distribution spatiale de l’oxygène, avec ces défauts ont été étudiées. Deux protocoles expérimentaux ont d’abord été développés pour évaluer la dégradation de la durée de vie des porteurs de charge sous éclairement dans le silicium riche en fer. Ensuite, il a été mis en évidence que l’introduction de germanium et d’étain en très grande quantité dans le silicium n’influence pas de façon significative le rendement de conversion des cellules. Cependant, contrairement à ce qui a été récemment avancé dans la littérature, aucune limitation due au co-dopage au germanium ou à l’étain de la dégradation sous éclairement des performances photovoltaïques n’a été observée. Par contre, il a été montré que le carbone entraîne un ralentissement de la dégradation due aux complexes bore-oxygène. Egalement, contrairement à l’étain qui n’influence pas la génération des donneurs thermiques, le germanium conduit à un ralentissement de la formation de ces défauts. Une expression empirique a été proposée pour rendre compte de cet effet, et ce pour une large gamme de teneurs en germanium. Enfin, dans le silicium très dopé et très compensé, la génération des donneurs thermiques est identique au cas du silicium standard. Ceci constitue un résultat marquant puisqu’il permet de valider par l’expérience le fait que la formation des donneurs thermiques est limitée par la teneur en électrons. / This study aims at understanding the effects of two main defects related to oxygen, the boron-oxygen complexes (responsible for light-induced degradation of the carrier lifetime) and the thermal donors (among other things, responsible for variations of the conductivity), on the electric and photovoltaic properties of silicon. More precisely, the interactions of isovalent impurities, known for modifying the oxygen spatial distribution, with these defects were studied. Two experimental protocols were first developed to evaluate the light-induced degradation of the carrier lifetime in iron-rich silicon. Then, the introduction in silicon of germanium and tin in high quantity were shown not to significantly influence the conversion efficiency of the cells. However, contrary to recent studies from the literature, no reduction due to germanium co-doping or to tin co-doping of the light-induced degradation of the photovoltaic performances was observed. However carbon was shown to lead to a slowdown of the degradation due to boron-oxygen complexes. Moreover contrary to tin which has no influence on the thermal donor generation, germanium slows down their formation. An empirical expression has been proposed to take into account this effect for a large range of germanium concentrations. Eventually in highly doped and compensated silicon, the thermal donor generation is identical as in conventional silicon, which experimentally confirms that the thermal donor formation is limited by the electron density.
2

Defekte im Bodenbereich blockerstarrten Solar-Siliziums

Ghosh, Michael 24 June 2010 (has links) (PDF)
Etwa die Hälfte aller Solarzellen weltweit wird aus blockerstarrtem Silizium hergestellt. Derartige Blöcke weisen in ihren Außenbereichen eine verringerte Diffusionslänge der Minoritätsladungsträger auf. Um die Ursache dafür im Fall des bodennahen Bereichs zu bestimmen wurden zwei Spezialblöcke (ein Block mit reduzierter Bor-Dotierung und ein Block mit Phosphor-Dotierung) - u. a. mittels DLTS und FTIR - auf Kristalldefekte untersucht. Zusätzlich zu Dotierelementen (B, P, Al, As) wurden im Bodenbereich folgende Defekte nachgewiesen: <u>Metalle</u>: Fe, Cr <u>Sauerstoffhaltige Defekte</u>: Interstitieller Sauerstoff, Thermische Donatoren (TD), O1, O2 <u>Stickstoffhaltige Defekte</u>: NN-Paar, NNO-Komplex, Shallow Thermal Donors (STD) <u>Ausgedehnte Defekte</u>: Versetzungen, Ausscheidungen, Korngrenzen. Die Verteilung der flachen Donatoren (P, TD, STD, As) und Akzeptoren (B, Al) bestimmt den Widerstandsverlauf im bodennahen Bereich des Phosphor dotierten Spezialblocks. Das dortige Diffusionslängenprofil kann im Rahmen der Shockley-Read-Hall-Statistik erst durch eine Erhöhung des Minoritätseinfangquerschnitts für das Cr-Niveau (Faktor 5) bzw. für das STD-Niveau (Faktor 10) nachgezeichnet werden. Eisen, Versetzungen und Korngrenzen haben hier keinen wesentlichen Einfluss. In den untersten Millimetern des Spezialblocks müssen weitere Defekte hinzukommen, die die Diffusionslänge zusätzlich reduzieren; Thermische Donatoren und O1 und eventuell Ausscheidungen kommen dazu in Frage. Die sinngemäße Übertragung der Konzentrationsverläufe aus den beiden Spezialblöcken auf einen Block mit einer produktionsüblichen Dotierung ([B]≈10<sup><small>16</small></sup>/cm<sup><small>3</small></sup>) ergibt, dass in diesem Fall verschiedene Defekte (TD, STD, CrB und FeB) einen Beitrag zur Diffusionslängenreduktion im bodennahen Blockbereich liefern.
3

Defekte im Bodenbereich blockerstarrten Solar-Siliziums: Identifikation, Verteilung und elektrischer Einfluss

Ghosh, Michael 03 July 2009 (has links)
Etwa die Hälfte aller Solarzellen weltweit wird aus blockerstarrtem Silizium hergestellt. Derartige Blöcke weisen in ihren Außenbereichen eine verringerte Diffusionslänge der Minoritätsladungsträger auf. Um die Ursache dafür im Fall des bodennahen Bereichs zu bestimmen wurden zwei Spezialblöcke (ein Block mit reduzierter Bor-Dotierung und ein Block mit Phosphor-Dotierung) - u. a. mittels DLTS und FTIR - auf Kristalldefekte untersucht. Zusätzlich zu Dotierelementen (B, P, Al, As) wurden im Bodenbereich folgende Defekte nachgewiesen: <u>Metalle</u>: Fe, Cr <u>Sauerstoffhaltige Defekte</u>: Interstitieller Sauerstoff, Thermische Donatoren (TD), O1, O2 <u>Stickstoffhaltige Defekte</u>: NN-Paar, NNO-Komplex, Shallow Thermal Donors (STD) <u>Ausgedehnte Defekte</u>: Versetzungen, Ausscheidungen, Korngrenzen. Die Verteilung der flachen Donatoren (P, TD, STD, As) und Akzeptoren (B, Al) bestimmt den Widerstandsverlauf im bodennahen Bereich des Phosphor dotierten Spezialblocks. Das dortige Diffusionslängenprofil kann im Rahmen der Shockley-Read-Hall-Statistik erst durch eine Erhöhung des Minoritätseinfangquerschnitts für das Cr-Niveau (Faktor 5) bzw. für das STD-Niveau (Faktor 10) nachgezeichnet werden. Eisen, Versetzungen und Korngrenzen haben hier keinen wesentlichen Einfluss. In den untersten Millimetern des Spezialblocks müssen weitere Defekte hinzukommen, die die Diffusionslänge zusätzlich reduzieren; Thermische Donatoren und O1 und eventuell Ausscheidungen kommen dazu in Frage. Die sinngemäße Übertragung der Konzentrationsverläufe aus den beiden Spezialblöcken auf einen Block mit einer produktionsüblichen Dotierung ([B]≈10<sup><small>16</small></sup>/cm<sup><small>3</small></sup>) ergibt, dass in diesem Fall verschiedene Defekte (TD, STD, CrB und FeB) einen Beitrag zur Diffusionslängenreduktion im bodennahen Blockbereich liefern.

Page generated in 0.0638 seconds