• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 12
  • 12
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 29
  • 24
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Identifikation von Waermeaustauschparametern Thermischer Netzwerke durch transient gemessene Knotentemperaturen bei minimierter Messzeit

Erfurt 04 December 2001 (has links) (PDF)
No description available.
22

Online parameter estimation applied to mixed conduction/radiation

Shah, Tejas Jagdish 29 August 2005 (has links)
The conventional method of thermal modeling of space payloads is expensive and cumbersome. Radiation plays an important part in the thermal modeling of space payloads because of the presence of vacuum and deep space viewing. This induces strong nonlinearities into the thermal modeling process. There is a need for extensive correlation between the model and test data. This thesis presents Online Parameter Estimation as an approach to automate the thermal modeling process. The extended Kalman fillter (EKF) is the most widely used parameter estimation algorithm for nonlinear models. The unscented Kalman filter (UKF) is a new and more accurate technique for parameter estimation. These parameter estimation techniques have been evaluated with respect to data from ground tests conducted on an experimental space payload.
23

Surface heat flow and lithospheric thermal structure of the northwestern Arabian Plate

Schütz, Felina January 2013 (has links)
The surface heat flow (qs) is paramount for modeling the thermal structure of the lithosphere. Changes in the qs over a distinct lithospheric unit are normally directly reflecting changes in the crustal composition and therewith the radiogenic heat budget (e.g., Rudnick et al., 1998; Förster and Förster, 2000; Mareschal and Jaupart, 2004; Perry et al., 2006; Hasterok and Chapman, 2011, and references therein) or, less usual, changes in the mantle heat flow (e.g., Pollack and Chapman, 1977). Knowledge of this physical property is therefore of great interest for both academic research and the energy industry. The present study focuses on the qs of central and southern Israel as part of the Sinai Microplate (SM). Having formed during Oligocene to Miocene rifting and break-up of the African and Arabian plates, the SM is characterized by a young and complex tectonic history. Resulting from the time thermal diffusion needs to pass through the lithosphere, on the order of several tens-of-millions of years (e.g., Fowler, 1990); qs-values of the area reflect conditions of pre-Oligocene times. The thermal structure of the lithosphere beneath the SM in general, and south-central Israel in particular, has remained poorly understood. To address this problem, the two parameters needed for the qs determination were investigated. Temperature measurements were made at ten pre-existing oil and water exploration wells, and the thermal conductivity of 240 drill core and outcrop samples was measured in the lab. The thermal conductivity is the sensitive parameter in this determination. Lab measurements were performed on both, dry and water-saturated samples, which is labor- and time-consuming. Another possibility is the measurement of thermal conductivity in dry state and the conversion to a saturated value by using mean model approaches. The availability of a voluminous and diverse dataset of thermal conductivity values in this study allowed (1) in connection with the temperature gradient to calculate new reliable qs values and to use them to model the thermal pattern of the crust in south-central Israel, prior to young tectonic events, and (2) in connection with comparable datasets, controlling the quality of different mean model approaches for indirect determination of bulk thermal conductivity (BTC) of rocks. The reliability of numerically derived BTC values appears to vary between different mean models, and is also strongly dependent upon sample lithology. Yet, correction algorithms may significantly reduce the mismatch between measured and calculated conductivity values based on the different mean models. Furthermore, the dataset allowed the derivation of lithotype-specific conversion equations to calculate the water-saturated BTC directly from data of dry-measured BTC and porosity (e.g., well log derived porosity) with no use of any mean model and thus provide a suitable tool for fast analysis of large datasets. The results of the study indicate that the qs in the study area is significantly higher than previously assumed. The new presented qs values range between 50 and 62 mW m⁻². A weak trend of decreasing heat flow can be identified from the east to the west (55-50 mW m⁻²), and an increase from the Dead Sea Basin to the south (55-62 mW m⁻²). The observed range can be explained by variation in the composition (heat production) of the upper crust, accompanied by more systematic spatial changes in its thickness. The new qs data then can be used, in conjunction with petrophysical data and information on the structure and composition of the lithosphere, to adjust a model of the pre-Oligocene thermal state of the crust in south-central Israel. The 2-D steady-state temperature model was calculated along an E-W traverse based on the DESIRE seismic profile (Mechie et al., 2009). The model comprises the entire lithosphere down to the lithosphere–asthenosphere boundary (LAB) involving the most recent knowledge of the lithosphere in pre-Oligocene time, i.e., prior to the onset of rifting and plume-related lithospheric thermal perturbations. The adjustment of modeled and measured qs allows conclusions about the pre-Oligocene LAB-depth. After the best fitting the most likely depth is 150 km which is consistent with estimations made in comparable regions of the Arabian Shield. It therefore comprises the first ever modelled pre-Oligocene LAB depth, and provides important clues on the thermal state of lithosphere before rifting. This, in turn, is vital for a better understanding of the (thermo)-dynamic processes associated with lithosphere extension and continental break-up. / Der Oberflächenwärmefluss (qs) ist maßgeblich für die Modellierung der thermischen Struktur der Lithosphäre. Änderungen im qs, innerhalb eines speziellen lithosphärischen Abschnitts, reflektieren direkt Änderungen in der krustalen Zusammensetzung und damit der radiogenen Wärmeproduktion (e.g., Rudnick et al., 1998; Förster und Förster, 2000; Mareschal und Jaupart, 2004; Perry et al., 2006; Hasterok und Chapman, 2011) oder aber, weniger häufig, Änderungen im Mantelwärmefluss (e.g., Pollack und Chapman, 1977). Die Kenntnis dieses physikalischen Parameters ist daher von großem Interesse, sowohl für die Forschung als auch für die Energiewirtschaft. Die vorliegende Studie befasst sich mit dem qs von Süd- und Zentralisrael als Teil der Sinai Mikroplatte (SM), welche während des Riftings und Auseinanderbrechens der Afrikanischen und Arabischen Platte im Oligozän entstand und durch diese, sehr junge und komplexe tektonische Geschichte, geprägt ist. Die thermische Diffusion benötigt einige Zehner-Millionen Jahre (e.g., Fowler, 1990) um die Lithosphäre zu durchlaufen, qs-Werte der Region reflektieren daher prä-oligozäne Bedingungen. Die thermische Struktur der Lithosphäre in Süd- und Zentralisrael, ist bis heute nur sehr wenig verstanden. Um dieses Problem anzugehen wurden die Parameter die für die qs-Bestimmung benötigt werden, eingehend untersucht. An zehn ehemaligen Wasser- und Erdölexplorationsbohrungen wurden neue Temperaturmessungen durchgeführt, und die Wärmeleitfähigkeit von 240 Bohrkern- und Aufschlussproben wurde im Labor gemessen. Die Wärmeleitfähigkeit ist in der qs-Bestimmung der sensitive Parameter. Die Labormessungen wurden sowohl an trockenen sowie an wasser-gesättigten Proben durchgeführt, was personal-und zeitaufwendig ist. Eine andere Möglichkeit ist die Messung der Wärmeleitfähigkeit im trockenen Zustand und das Konvertieren zu einem saturierten Wert unter der Verwendung von Mischungsgesetzen. Das Vorhandensein eines umfangreichen und sehr diversen Wärmeleitfähigkeit-Datensatzes ermöglicht (1) in Verbindung mit dem Temperaturgradienten die Berechnung von neuen zuverlässigen qs-Werten sowie deren Verwendung zur Modellierung der thermischen Struktur der prä-oligozänen Kruste in Israel und (2) in Verbindung mit vergleichbaren Datensätzen, die vorhandenen Mischungsgesetzte zur indirekten Bestimmung der saturierten Gesamtwärmeleitfähigkeit (BTC) qualitativ zu überprüfen. Die Zuverlässigkeit numerisch bestimmter BTC-Werte variiert für die verschiedenen Mischungsgesetze und ist darüber hinaus stark von der Lithologie der Proben abhängig. Mittels spezifischer Korrekturgleichungen können Abweichungen zwischen gemessenen und berechneten Werten jedoch erheblich reduziert werden. Die Datenanzahl und die statistische Analyse ermöglichte darüber hinaus die Ableitung von lithotypspezifischen Konvertierungsgleichungen, um die saturierte BTC anhand von trocken gemessenen BTC- und Porositätswerten (z.B. aus Logs) zu berechnen. Dieser Ansatz führt, für alle Lithotypen, zu einer guten Reproduzierbarkeit gemessener Werte und ist daher eine nützliche Alternative, wann immer große Probenmengen behandelt werden. Die Ergebnisse dieser Studie zeigen, dass der qs im Untersuchungsgebiet signifikant höher ist, als bisher angenommen. Die qs-Werte, die in dieser Studie für Israel bestimmt wurden, schwanken zwischen 50 und 62 mW m⁻². Ein schwacher Trend abnehmender Werte von Ost nach West (55-50 mW m⁻²), und ein leichter Trend ansteigender Werte vom Toten Meer nach Süden (55-62 mW m⁻²) können identifiziert werden. Diese beobachteten Schwankungen lassen sich mit Variationen in der krustalen Zusammensetzung (Wärmeproduktion) erklären, einhergehend mit regionalen Änderungen der Krustenmächtigkeit. Die neuen qs-Daten können dann, im Zusammenhang mit petrophysikalischen Daten und Informationen über die Struktur und Zusammensetzung der Lithosphäre, verwendet werden um ein Model des prä-oligozänen thermischen Zustandes der Kruste Zentral- und Südisraels abzugleichen. Das stationäre 2-D Temperatur-Modell wurde entlang einer E-W Traverse, basierend auf dem seismischen DESIRE-Profil (Mechie et al., 2009), berechnet. Es reicht bis zur Lithosphären–Asthenosphären Grenze (LAB) und bezieht sich auf das aktuellste Wissen über die prä-oligozäne Lithosphäre, also vor dem Einsetzen von Rifting und plumebedingten thermischen Störungen. Durch den Abgleich zwischen gemessenen und modellierten qs-Werten ist es möglich auf die prä-oligozäne LAB-Tiefe zurückzuschließen. Als wahrscheinlichste Tiefe ergeben sich 150 km, was konsistent ist mit LAB-Tiefen Abschätzungen aus vergleichbaren stabilen Regionen des Arabischen Schildes. Dies liefert wichtige Anhaltspunkte über den thermischen Zustand der Lithosphäre vor dem Einsetzen von Rifting in der Region und ist wiederum entscheidend für ein besseres Verständnis der dynamischen Prozesse in Assoziation mit Extension der Lithosphäre und dem kontinentalem Auseinanderbrechen.
24

Intelligent Methods for Evaluating the Impact of Weather on Power Transmission Infrastructure

Pytlak, Pawel Maksymilian Unknown Date
No description available.
25

Predictive Dynamic Thermal and Power Management for Heterogeneous Mobile Platforms

January 2015 (has links)
abstract: Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there is a strong need for dynamic thermal and power management (DTPM) algorithms that can regulate temperature with minimal performance impact. This abstract presents a DTPM algorithm based on a practical temperature prediction methodology using system identification. The DTPM algorithm dynamically computes a power budget using the predicted temperature, and controls the types and number of active processors as well as their frequencies. Experiments on an octa-core big.LITTLE processor and common Android apps demonstrate that the proposed technique predicts temperature within 3% accuracy, while the DTPM algorithm provides around 6x reduction in temperature variance, and as large as 16% reduction in total platform power compared to using a fan. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
26

Dynamic Loading of Substation Distribution Transformers: An Application for use in a Production Grade Environment

January 2013 (has links)
abstract: Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can be achieved through the use of dynamic loading. A benefit of dynamic loading is that it allows better utilization of the transformer capacity, thus increasing the flexibility and reliability of the power system. This document presents the progress on a software application which can estimate the maximum time-varying loading capability of transformers. This information can be used to load devices closer to their limits without exceeding the manufacturer specified operating limits. The maximally efficient dynamic loading of transformers requires a model that can accurately predict both top-oil temperatures (TOTs) and hottest-spot temperatures (HSTs). In the previous work, two kinds of thermal TOT and HST models have been studied and used in the application: the IEEE TOT/HST models and the ASU TOT/HST models. And, several metrics have been applied to evaluate the model acceptability and determine the most appropriate models for using in the dynamic loading calculations. In this work, an investigation to improve the existing transformer thermal models performance is presented. Some factors that may affect the model performance such as improper fan status and the error caused by the poor performance of IEEE models are discussed. Additional methods to determine the reliability of transformer thermal models using metrics such as time constant and the model parameters are also provided. A new production grade application for real-time dynamic loading operating purpose is introduced. This application is developed by using an existing planning application, TTeMP, as a start point, which is designed for the dispatchers and load specialists. To overcome the limitations of TTeMP, the new application can perform dynamic loading under emergency conditions, such as loss-of transformer loading. It also has the capability to determine the emergency rating of the transformers for a real-time estimation. / Dissertation/Thesis / M.S. Electrical Engineering 2013
27

Design and Control of a Resonant, Flapping Wing Micro Aerial Vehicle Capable of Controlled Flight

Colmenares, David 01 August 2017 (has links)
Small scale unmanned aircraft, such as quadrotors, that are quickly emerging as versatile tools for a wide range of applications including search and rescue, hazardous environment exploration, or just shooting great video, are known as micro air vehicles (MAVs). However, for millimeter scale vehicles with weights under 10 grams, conventional flight technologies become greatly inefficient and instead inspiration is drawn from biology. Flapping wing MAVs (FWMAVs) have been created based on insects and hummingbirds in an effort to emulate their extreme agility and ability to hover in place. FWMAVs possess unique capabilities in terms of maneuverability, small size, and ability to operate in dynamic environments that make them particularly well suited for environmental monitoring and swarm applications such as artificial crop pollination. Despite their advantages, significant challenges in fabrication, power, and control must be overcome in order to make FWMAVs a reliable platform. Current designs suffer from high mechanical complexity and often rely on off-board power, sensing, and control, which compromises their autonomy and limits practical applications. The goal of my research is to develop a simple FWMAV design that provides high efficiency and controllability. An efficient, simple, and controllable vehicle design is developed utilizing the principles of resonance, emulation of biological flight control, and under-actuation. A highly efficient, resonant actuator is achieved by attaching a spring in parallel to the output shaft of a commercial geared DC micro-motor. This actuator directly drives the wings of the vehicle, allowing them to be controlled precisely and independently. This direct control strategy emulates biology and differs from other FWMAV designs that utilize complicated transmissions to generate flapping from rotary motor output. Direct control of the wings allows for emulation of biological wing kinematics, resulting in control based on wing motion alone. Furthermore, under-actuation is employed to mimic the rotational motion of insect wings. A rotational joint is added between the motor and wing membrane such that the wing rotates passively in response to aerodynamic forces that are generated as the wing is driven. This design is realized in several stages, initial prototyping, simulation and development of the actuator and wings, then finally a control system is developed. First the system was modeled and improved experimentally in order to achieve lift off. Improvements to the actuator were realized through component variation and custom fabrication increasing torque and power density by 161.1% and 666.8% respectively compared to the gearmotor alone and increased the resonant operating frequency of the vehicle from 4 Hz to 23 Hz. Advances in wing fabrication allowed for flexible wings that increased translational lift production by 35.3%, aerodynamic efficiency by 41.3%, and the effective lift coefficient by 63.7% with dynamic twisting. A robust control architecture was then developed iteratively based on a date driven system model in order to increase flight time from 1 second (10 wing strokes) to over 10 seconds (230 wing strokes). The resulting design improves lift to weight by 166%, allowing for a payload capacity of approximately 8.7 g and offers the potential for fully autonomous operation with all necessary components included on-board. A thermal model for micro-motors was developed and tuned to accurately predict an upper limit of system operation of 41 seconds as well as to optimize a heatsink that increases operating time by 102.4%.
28

Development of a Dynamic Thermal Model for the Rear Electric Motor System on the Ohio State EcoCAR Mobility Challenge Vehicle

Loyd, Kerri Aileen January 2021 (has links)
No description available.
29

Analysis on Tyre Wear : Modelling and Simulations

Wangs, Taozhi January 2017 (has links)
The tyre is an essential part of a road vehicle. It is in the contact between road and tyre that the forces that create the possibility for the driver to control the vehicle are generated. Tyres, however, wear down, which leads to both unhealthy wear particles and disposal of old tyres, both of which are harmful to the environment. If one could learn more about what causes wear, it might be possible to reduce tyre wear, which would be beneficial from both an economic and an ecological point of view. The aim of this thesis work is to develop a tyre model that can simulate tyre wear and take temperature, pressure and vehicle settings into account. Based on tyre brush theory, a tyre wear model has been developed which includes a thermal model, a pressure model and a friction model. Simulations and analysis of different cases has been performed. From the results, one can conclude the following: the tyre temperature and inflation pressure change with the distance the vehicle travels at the beginning and later become steady; higher external temperature will decrease tyre wear rate since the inflation pressure increases with the external temperature and the sliding friction decreases; higher vehicle speed leads to a higher tyre wear rate; the tyre temperature increases with increasing vehicle speed; the amount of tyre wear increases linearly with the normal load on the tyre; the tyre wear increases with the slip ratio exponentially due to both the siding distance and the sliding friction increasing with the slip ratio; the tyre wear increases exponentially with the slip angle. The complete model can estimate the tyre wear with different vehicle settings and external factors. More experiments are needed in the future to validate the complete model. In addition, since the heat transfer coefficient is changeable with temperature, the thermal model can be improved by introducing dynamic heat transfer coefficients. The Savkoor friction model used in the report can also be improved by tuning its parameters using more experimental data.
30

Thermal Modeling And Laser Beam Shaping For Microvias Drilling In High Density Packaging

Zhang, Chong 01 January 2008 (has links)
Laser drilling of microvias for organic packaging applications is studied in present research. Thermal model is essential to understand the laser-materials interactions and to control laser drilling of blind micro holes through polymeric dielectrics in multilayer electronic substrates. In order to understand the profile of the drilling front irradiated with different laser beam profiles, a transient heat conduction model including vaporization parameters is constructed. The absorption length in the dielectric is also considered in this model. Therefore, the volumetric heating source criteria are applied in the model and the equations are solved analytically. The microvia drilling speed, temperature distribution in the dielectric and the thickness of the residue along the microvia walls and at the bottom of the microvia are studied for different laser irradiation conditions. An overheated metastable state of material is found to exist inside the workpiece. The overheating parameters are calculated for various laser drilling parameters and are used to predict the onset of thermal damage and to minimize the residue. As soon as a small cavity is formed during the drilling process, the concave curvature of the drilling front acts as a concave lens that diverges the incident laser beam. This self-defocusing effect can greatly reduce the drilling speed. This effect makes the refractive index of the substrate at different wavelengths an important parameter for laser drilling. A numerical thermal model is built to study the effect of self-defocusing for laser microvias drilling in multilayer electronic substrates with Nd:YAG and CO2 lasers.. The laser ablation thresholds was calculated with this model for the CO2 and Nd:YAG lasers respectively. Due to the expulsion of materials because of high internal pressures in the case of Nd:YAG laser microvia drilling, the ablation threshold may be far below the calculated value. A particular laser beam shape, such as pitch fork, was found to drill better holes than the Gaussian beam in terms of residue and tapering angle. Laser beam shaping technique is used to produce the desired pitchfork beam. Laser beam shaping allows redistribution of laser power and phase across the cross-section of the beam for drilling perfectly cylindrical holes. An optical system, which is comprised of three lenses, is designed to transform a Gaussian beam into a pitchfork beam. The first two lenses are the phase elements through which a Gaussian laser beam is transformed into a super Gaussian beam. The ray tracing technique of geometrical optics is used to design these phase elements. The third lens is the transform element which produces a pitchfork profile at the focal plane due to the diffraction effect. A pinhole scanning power meter is used to measure the laser beam profile at the focal plane to verify the existence of the pitchfork beam. To account for diffraction effect, the above mentioned laser beam shaping system was optimized by iterative method using Adaptive Additive algorithm. Fresnel diffraction is used in the iterative calculation. The optimization was target to reduce the energy contained in the first order diffraction ring and to increase the depth of focus for the system. Two diffractive optical elements were designed. The result of the optimization was found dependent on the relation between the diameter of the designed beam shape and the airy disk diameter. If the diameter of the designed beam is larger, the optimization can generate better result. Drilling experiment is performed with a Q-switched CO2 laser at wavelength of 9.3 μm. Comparison among the drilling results from Gaussian beam, Bessel beam and Pitchfork beam shows that the pitchfork beam can produce microvias with less tapering angle and less residue at the bottom of the via. Laser parameters were evaluated experimentally to study their influences on the via quality. Laser drilling process was optimized based on the evaluation to give high quality of the via and high throughput rate. Nd:YAG laser at wavelengths of 1.06 μm and 532 nm were also used in this research to do microvias drilling. Experimental result is compared with the model. Experimental results show the formation of convex surfaces during laser irradiation. These surfaces eventually rupture and the material is removed explosively due to high internal pressures. Due to the short wavelength, high power, high efficiency and high repetition rate, these lasers exhibit large potentials for microvias drilling.

Page generated in 0.042 seconds