• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulação da transferência de calor e das tensões residuais térmicas obtidas em estudos de têmpera / Simulation of heat transfer and thermal residual stresses obtained in quenching studies

Penha, Renata Neves 05 May 2006 (has links)
A simulação no tratamento térmico tem-se tornado de vital importância, principalmente na fase de projeto de produto e planejamento e controle produção, reduzindo significativamente o tempo e o custo antes dedicados a estas tarefas. Esta tecnologia quando combinada à medição das curvas de resfriamento, torna-se uma poderosa e confiável ferramenta para a predição das propriedades mecânicas e metalúrgicas em peças tratadas termicamente. A modelagem do processo de têmpera traz como resultados, a exeqüibilidade do processo, a constituição microestrutural final e a distribuição das distorções e tensões residuais da peça. O presente trabalho visa simular a transferência de calor, através do cálculo dos coeficientes de transferência de calor, e das tensões residuais térmicas e distorções em corpos de prova de aço AISI 5160 e de uma sonda de Inconel 600, com a análise posterior dos parâmetros obtidos. / The simulation of heat treating is becoming of vital importance, specially during design of product and production planning and control, reducing significantly costs and time that used to be wasted on these tasks. This technology when combined to measured cooling curves, become a powerful and trustful tool for predicting mechanical and metallurgical properties of heat treated components. Modeling the quenching process shows the feasibility of the process, the final microstructure and the distribution of residual stresses and distortions on workpiece. The present work aims at simulate the heat transfer, the thermal residual stresses and distortions in a workpiece of AISI 5160 steel and of a probe of Inconel 600, with posterior analysis of the obtained parameters.
2

Simulação da transferência de calor e das tensões residuais térmicas obtidas em estudos de têmpera / Simulation of heat transfer and thermal residual stresses obtained in quenching studies

Renata Neves Penha 05 May 2006 (has links)
A simulação no tratamento térmico tem-se tornado de vital importância, principalmente na fase de projeto de produto e planejamento e controle produção, reduzindo significativamente o tempo e o custo antes dedicados a estas tarefas. Esta tecnologia quando combinada à medição das curvas de resfriamento, torna-se uma poderosa e confiável ferramenta para a predição das propriedades mecânicas e metalúrgicas em peças tratadas termicamente. A modelagem do processo de têmpera traz como resultados, a exeqüibilidade do processo, a constituição microestrutural final e a distribuição das distorções e tensões residuais da peça. O presente trabalho visa simular a transferência de calor, através do cálculo dos coeficientes de transferência de calor, e das tensões residuais térmicas e distorções em corpos de prova de aço AISI 5160 e de uma sonda de Inconel 600, com a análise posterior dos parâmetros obtidos. / The simulation of heat treating is becoming of vital importance, specially during design of product and production planning and control, reducing significantly costs and time that used to be wasted on these tasks. This technology when combined to measured cooling curves, become a powerful and trustful tool for predicting mechanical and metallurgical properties of heat treated components. Modeling the quenching process shows the feasibility of the process, the final microstructure and the distribution of residual stresses and distortions on workpiece. The present work aims at simulate the heat transfer, the thermal residual stresses and distortions in a workpiece of AISI 5160 steel and of a probe of Inconel 600, with posterior analysis of the obtained parameters.
3

ZrB2-SiC Based Ultra High Temperature Ceramic Composites: Mechanical Performance and Measurement and Design of Thermal Residual Stresses for Hypersonic Vehicle Applications

Stadelmann, Richard 01 January 2015 (has links)
Ultra-high temperature ceramics (UHTCs), such as ZrB2-based ceramic composites, have been identified as next generation candidate materials for leading edges and nose cones in hypersonic air breathing vehicles. Mechanical performance of ceramic composites play an important role in the ultra-high temperature applications, therefore SiC is added to ZrB2 as a strengthening phase to enhance its mechanical performance. The high melting temperatures of both ZrB2 and SiC, as well as the ability of SiC to form SiO2 refractory oxide layers upon oxidation make ZrB2-SiC ceramics very suitable for aerospace applications. Thermal residual stresses appearing during processing are unavoidable in sintered ZrB2-SiC ceramic composites. Residual microstresses appear at the microstructural level (intergranular microstresses) or at the crystal structure level (intragranular microstresses). These microstresses are of enormous importance for the failure mechanisms in ZrB2-SiC ceramics, such as ratio of the trans- and intergranular fracture; crack branching or bridging, microcracking, subcritical crack growth and others, as they govern crack propagation–induced energy dissipation and affect the toughness and strength of the ceramic material. Therefore, understanding the evolution of residual stress state in processed ZrB2-SiC ceramic composites and accurate measurements of these stresses are of high priority. In the present research the ZrB2-17vol%SiC, ZrB2-32vol%SiC, and ZrB2-45vol%SiC ultra-high temperature particulate ceramic composites were sintered using both Hot Pressing (HP) and Spark Plasma Sintering (SPS) techniques. The mechanical performance of the ZrB2-SiC composites was investigated using 3- and 4-point bending techniques for measurements of instantaneous fracture strength and fracture toughness. Resonant Ultrasound Spectroscopy was used for measurement of Young's, shear, and bulk moduli as well as Poisson's ratio of the composites. The distribution of thermal residual stresses and the effect of the applied external load on their re-distribution was studied using micro-Raman spectroscopy. Piezospectroscopic coefficients were determined for all compositions of ZrB2-SiC ceramic under study and their experimentally obtained values were compared with the piezospectroscopic coefficients both published in the literature and calculated using theoretical approach. Finally, the novel ZrB2-IrB2-SiC ceramic composites were also produced using Spark Plasma Sintering (SPS), where IrB2 powder was synthesized using mechanochemical route. It is expected that the IrB2 additive phase might contribute to the improved overall oxidation resistance of ZrB2 based ultra-high temperature ceramic composites.
4

Method to Discretize Continuous Gradient Structures and Calculate Thermal Residual Stresses within Layered Functionally Graded Ceramics

Neale, Ryan E 01 January 2019 (has links)
Functionally graded materials (FGMs) are an advanced class of material which seeks to leverage the strengths of one material to mitigate the weaknesses of another. This allows for operation in extreme environments or conditions where materials properties must change at various locations within a structure. Fabrication of this advanced class of material is limited due to geometric, economic, and material constraints inherent in the various methods. For this reason, a model was developed to discretize continuous gradient curves to allow for the use of a step-wise approximations to such gradients. These alternative step-wise gradients would allow for the use of numerous manufacturing techniques which have improved composition control, cost of processing, cost of equipment, and equipment availability. One such technique, tape casting, was explored due to its robustness and ability to create layered ceramics. Since ceramics are inherently brittle materials, they serve to be strengthened by the thermal residual stresses that form in the creation of these step-wise graded composites. With models to calculate these residual stresses and determine step-wise approximations of various compositional gradients, the process of designing these layered ceramics can be significantly improved.
5

Experimental and Numerical Investigations on the Durability and Fracture Mechanics of the Bonded Systems for Microelectronics Application

Guo, Shu 01 September 2003 (has links)
Water-assisted crack growth at an epoxy/glass interface was measured as a function of applied strain energy release rate, G, and temperature using a wedge test geometry. The specimens consist of two glass plates bonded with a thin layer of proprietary epoxy adhesive. The crack fronts along the epoxy/glass interfaces were measured using an optical stereomicroscope. The relationship between G and the debonding rate, v, can be measured using this method, and the threshold value of strain energy release rate, Gth, can be determined from the measured data. Two types of testing procedures were conducted in this study: ex situ, i.e., pre-conditioned wedge tests and in situ ones, in which wedges were applied before the specimens were submerged into water. A preliminary model was developed based on the thermal activation barrier concept, and allows the prediction of Gth for the temperatures beyond the testing region. Changes in interfacial strain energy release rate caused by thermal residual stresses in a triple-layered specimen were analyzed in Chapter Three. The method is based on linear elastic fracture mechanics and simple beam theory. The curvature of a bimaterial strip was chosen to characterize the residual stress in the specimen, and the strain energy release rate, caused by both tensile and compressive residual stresses in the adhesive, was derived for an asymmetric double cantilever beam (ADCB) geometry. The contribution of the thermal residual and mechanical stress to the global energy release rate was analyzed. The thermally induced energy release rate, GT, is found to be independent of crack length, but is a function of residual stress level and geometric and material parameters of the specimen. The adhesion of films and coatings to rigid substrates is often measured using blister geometries, which are loaded either by an applied pressure or a central shaft. The measurement will be affected if there are residual stresses that make a contribution to the energy release rate. This effect is investigated using analytical solutions based on the principle of virtual displacements. A geometrically nonlinear finite element analysis is conducted for comparison. Furthermore, the relationships among strain energy release rate, load, deflection, and fracture radius are discussed in detail in Chapter Four. Both analytical solutions and numerical results reveal that uniform tensile residual stresses reduce a specimen's deflection if it experiences plate behavior under small loads. However, this effect diminishes when membrane behavior is dominant. The mechanics of a single-lap joint with different boundary conditions subjected to tensile loading are investigated. Closed-form solutions are obtained for a specimen configuration considering different clamping methods. Based on the approach pioneered by Goland and Reissner, the solutions reported in this paper provide a simple but useful way to understand the effects of boundary conditions on this test geometry. The solutions in this study suggest that different grip configurations mainly affect the response of the specimens if the grip position is close to the joint edge or the loads are small. Generally, the influence caused by different gripping methods is only limited to the boundary region, and the behavior of the joint part subjected to tensile loading is almost the same as that for a simply-supported case. / Ph. D.
6

Thermoplastbasierte hybride Laminate für Hochleistungsanwendungen im Leichtbau

Zopp, Camilo 15 February 2022 (has links)
Leichtbau zählt als eines der Zukunftstechnologien des 21. Jahrhunderts, um sowohl die Mobilitätsfragen von morgen zu beantworten als auch die klima- und energiepolitischen Ziele zu erreichen. Ein wesentlicher Fokus wird dabei auf Multi-Material-Systeme gelegt. Insbesondere die Kombination von faserverstärkten Kunststoffen und metallischen Legierungen zu sog. hybriden Laminaten zeigt ein hohes Substitutions- und Leichtbaupotential gegenüber klassischen monolithischen Konstruktionswerkstoffen. Vorrangig werden derartige hybride Schichtverbunde mit einer duroplastischen Matrix hergestellt, wodurch allerdings Restriktionen, bspw. gegenüber Produktivität, Recycling- und Lagerfähigkeit, resultieren. Eine besondere Alternative dazu bieten hybride Laminate auf Thermoplastbasis. Im Rahmen dieser Arbeit wurden die am Bundesexzellenzcluster MERGE entwickelten neuartigen thermoplastbasierten Schichtverbunde Carbon Fibre-Reinforced Polyamid/Aluminium Laminate (CAPAAL®) und Carbon Fibre-Reinforced Thermoplastic Polyurethane/Aluminium Laminate (CATPUAL) erforscht und im optimierten variothermen Pressprozess hergestellt. Um die Werkstoffverbunde über die Grundlagenforschung hinaus, etwa in der industriellen Nutzung, zu etablieren, wurden umfangreiche Charakterisierungen und Fertigungsstudien durchgeführt. Zum einen erfolgten mikrostrukturell-analytische Untersuchungen u. a. zu der Imprägniergüte, der Oberflächenbehandlung der Aluminiumlegierung und des Versagensverhaltens. Zum anderen fanden mechanisch-technologische Charakterisierungen bezüglich quasi-statischer Versuche unter Zug- und Biegebelastung sowie Ermüdungsversuche unter Biegebelastung im Niedrig-Frequenzbereich statt. Die quasi-statischen Untersuchungen der Subkomponenten (Aluminiumlegierung, Verbundwerkstoff) und der hybriden Laminate wurden sowohl unter Raumtemperatur als auch unter definierten Temperaturbelastungen und Konditionierungszuständen durchgeführt, um deren Sensitivität zu analysieren sowie zu bewerten. Ebenfalls erfolgten analytische Berechnungen zur Auslegung der hybriden Schichtverbunde basierend auf der klassischen Laminattheorie und der Mischungsregel unter Einbeziehung des Metallvolumengehalts. Darüber hinaus wurden die thermisch induzierten Eigenspannungen analytisch ermittelt und in die Berechnungen der quasi-statischen Kennwerte inkludiert. Anhand der Untersuchungen konnte nachgewiesen werden, dass CAPAAL® und CATPUAL als „maßgeschneiderte“ Halbzeuge oder Strukturbauteile mit einem hohen Leichtbaupotential für großseriennahe Anwendungen prädestiniert sind. Diese weisen in Abhängigkeit der medialen Belastungen eine höhere Performance und ein weniger katastrophales Versagensverhalten als die entsprechenden Faser-Kunststoff-Verbunde auf. Zudem wurde konstatiert, dass eine hervorragende Ermüdungsfestigkeit unter Biegebelastung vorliegt. Die theoretischen Vorhersagen weisen vor allem über den Ansatz der Mischungsregel eine gute Korrelation zu den experimentell ermittelten Kennwerten auf.:1 Einleitung 2 Stand der Wissenschaft und Technik 3 Materialien und experimentelle Untersuchungen 4 Versuchsergebnisse und Diskussion 5 Bewertung der erzielten Ergebnisse 6 Ausgewählte Leichtbaulösungen 7 Zusammenfassung und Ausblick / Lightweight construction is considered one of the future technologies of the 21st century, both to answer tomorrow's mobility questions and to achieve climate and energy policy goals. A major focus is placed on multi-material systems. In particular, the combination of fibre-reinforced plastics and metal alloys to form so-called hybrid laminates shows a high substitution and lightweight construction potential compared to classic monolithic construction materials. Such hybrid laminates are primarily produced with a thermoset matrix, which results in restrictions, e. g. with regard to productivity, recyclability and storability. Hybrid laminates based on thermoplastics offer a special alternative. In the context of this work, the novel thermoplastic-based laminates Carbon Fibre-Reinforced Polyamid/Aluminium Laminate (CAPAAL®) and Carbon Fibre-Reinforced Thermoplastic Polyurethane/Aluminium Laminate (CATPUAL) were researched and produced in an optimised vario-heat pressing process. In order to establish the material composites beyond basic research, for example in industrial use, extensive characterization and manufacturing studies were carried out. On the one hand, microstructural-analytical characterisations were conducted, for example, on the impregnation quality, the surface treatment of the aluminium alloy and the failure behaviour. On the other hand, mechanical-technological investigations were carried out with regard to quasi-static tests under tensile and bending load as well as fatigue tests under bending load in the low-frequency range. The quasi-static tests of the subcomponents (aluminium alloy, composite material) and hybrid laminates were carried out both at room temperature and under defined temperature loads and conditioning conditions in order to analyse and evaluate their sensitivity. Analytical calculations for the design of the hybrid laminates based on the classical laminate theory and the rule of mixtures including the metal volume content were also considered. Furthermore, the thermally induced residual stresses were determined analytically and included in the calculations of the quasi-static characteristic values. Based on the investigations, it was possible to prove that CAPAAL® and CATPUAL are predestined as 'tailor-made' semi-finished products or structural components with a high lightweight construction potential for applications close to large-scale production. Depending on the medial loads, these exhibit higher performance and less catastrophic failure behaviour than the corresponding fibre-plastic composites. In addition, it was stated that there is an excellent fatigue strength under bending load. The theoretical predictions show a good correlation to the experimentally determined characteristic values, especially via the rule of mixtures approach.:1 Einleitung 2 Stand der Wissenschaft und Technik 3 Materialien und experimentelle Untersuchungen 4 Versuchsergebnisse und Diskussion 5 Bewertung der erzielten Ergebnisse 6 Ausgewählte Leichtbaulösungen 7 Zusammenfassung und Ausblick

Page generated in 0.1031 seconds