• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a regeneration procedure for commercial automotive three-wy catalysts

Birgersson, Henrik January 2004 (has links)
<p>Car exhaust catalysts were introduced in the early 1980’s, to limit the release of pollutants such as hydrocarbons, carbon monoxides and nitrogen oxides. These catalysts contain noble metals such as palladium (Pd), platinum (Pt) and rhodium (Rh) and are able to simultaneously abate all three of the above-mentioned pollutants, hence the name three-way catalyst (TWC). The exposure to high temperatures (800-1000 °C) during operation and the presence of additives in petrol such as lead, calcium, silicon, magnesium, manganese, chromium, sulphur and phosphorus will after a certain time start to lower the overall effectiveness of the catalyst. These effects are either of a mechanical or a chemical nature. High temperatures reduce the active area by causing the noble metals to agglomerate and sinter whereas the additives alter the activity by either fouling the pores of the support material (phosphorus) or by interacting with the metals (sulphur and lead).</p><p>The main objective of this work was to develop a method to redisperse the catalytically active sites, comprising Pd, Pt and Rh on the washcoat surface, in an effort to regain lost catalyst activity. For this purpose, a wide spectrum of different commercial car exhaust catalysts containing varying noble metal loadings, aged under various driving conditions and with mileages ranging from 30 to 100 000 km were evaluated.</p><p>The influence of a thermal treatment in a controlled gas atmosphere, such as oxygen or hydrogen and a redispersing agent, e.g. chlorine, on the activity of TWC was investigated by means of laboratory-scale activity measurements. Several complementary characterisation methods such as SEM/TEM, XRD, BET and TPR were used to verify the effects of the regeneration treatments on the catalyst morphology (Paper I). Partial regeneration of catalyst activity and noble metal dispersion was achieved after thermal treatment in an oxygen-chlorine rich atmosphere at temperatures below 500 °C.</p><p>Finally, an investigation of the effects of an oxy-chlorine thermal treatment for regeneration of a ‘full-scale’ commercial automotive three-way catalyst was performed. Catalyst activity and performance prior to and after the oxy-chlorine thermal treatment was measured on a test vehicle in accordance with the European driving cycle (EC2000). The catalyst surface was further characterised using XRD and EDX (Paper II). Improved catalyst activity for a high mileage catalyst could be observed, with emissions lowered by approximately 30 to 40 vol% over the EC2000 driving cycle</p>
2

Quantum control of a many-body system in a spin-1 Bose-Einstein condensate

Hoang, Thai Minh 13 January 2014 (has links)
Ultracold atoms provide a powerful tool for studying quantum control of interacting many-body systems with well-characterized and controllable Hamiltonians. In this thesis, we demonstrate quantum control of a many-body system consisting of a ferromagnetic spin-1 Bose-Einstein condensate (BEC). By tuning the Hamiltonian of the system, we can generate either a phase space with an unstable hyperbolic fixed point or a phase space with an elliptical fixed point. A classical pendulum with a stable oscillation about the "down" position and an inverted pendulum with unstable non-equilibrium dynamics about the "up" position are classical analogs of the quantum spin dynamics we investigate in this thesis. In one experiment, we dynamically stabilize the system about an unstable hyperbolic fixed point, which is similar to stabilizing an inverted pendulum. In a second experiment, we parametrically excite the system by modulating the quadratic Zeeman energy. In addition, we demonstrate rectifier phase control as a new method to manipulate the quantum states of the many-body system. This is similar to parametric excitation and manipulation of the oscillation angle of a classical pendulum. These experiments demonstrate the ability to control a quantum system realized in a spinor BEC, and they also can be applied to other quantum systems. In addition, we extend our studies to atoms above the Bose-Einstein transition temperature, and we present results on thermal spin relaxation processes and equilibrium spin populations.
3

Development of a regeneration procedure for commercial automotive three-wy catalysts

Birgersson, Henrik January 2004 (has links)
Car exhaust catalysts were introduced in the early 1980’s, to limit the release of pollutants such as hydrocarbons, carbon monoxides and nitrogen oxides. These catalysts contain noble metals such as palladium (Pd), platinum (Pt) and rhodium (Rh) and are able to simultaneously abate all three of the above-mentioned pollutants, hence the name three-way catalyst (TWC). The exposure to high temperatures (800-1000 °C) during operation and the presence of additives in petrol such as lead, calcium, silicon, magnesium, manganese, chromium, sulphur and phosphorus will after a certain time start to lower the overall effectiveness of the catalyst. These effects are either of a mechanical or a chemical nature. High temperatures reduce the active area by causing the noble metals to agglomerate and sinter whereas the additives alter the activity by either fouling the pores of the support material (phosphorus) or by interacting with the metals (sulphur and lead). The main objective of this work was to develop a method to redisperse the catalytically active sites, comprising Pd, Pt and Rh on the washcoat surface, in an effort to regain lost catalyst activity. For this purpose, a wide spectrum of different commercial car exhaust catalysts containing varying noble metal loadings, aged under various driving conditions and with mileages ranging from 30 to 100 000 km were evaluated. The influence of a thermal treatment in a controlled gas atmosphere, such as oxygen or hydrogen and a redispersing agent, e.g. chlorine, on the activity of TWC was investigated by means of laboratory-scale activity measurements. Several complementary characterisation methods such as SEM/TEM, XRD, BET and TPR were used to verify the effects of the regeneration treatments on the catalyst morphology (Paper I). Partial regeneration of catalyst activity and noble metal dispersion was achieved after thermal treatment in an oxygen-chlorine rich atmosphere at temperatures below 500 °C. Finally, an investigation of the effects of an oxy-chlorine thermal treatment for regeneration of a ‘full-scale’ commercial automotive three-way catalyst was performed. Catalyst activity and performance prior to and after the oxy-chlorine thermal treatment was measured on a test vehicle in accordance with the European driving cycle (EC2000). The catalyst surface was further characterised using XRD and EDX (Paper II). Improved catalyst activity for a high mileage catalyst could be observed, with emissions lowered by approximately 30 to 40 vol% over the EC2000 driving cycle

Page generated in 0.0702 seconds