• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of the rate form of the equation of state for the dynamic simulation of thermal-hydraulic systems / Lambert Hendrik Fick

Fick, Lambert Hendrik January 2013 (has links)
The modelling of multi-phase water flow is an important modern-day design tool used by engineers to develop practical systems which are beneficial to society . Multi-phase water flow can be found in many important industrial applications such as large scale conventional and nuclear power systems, heat transfer machinery, chemical process plants, and other important examples. Because of many inherent complexities in physical two-phase flow processes, no generalised system of equations has been formulated that can accurately describe the two-phase flow of water at all flow conditions and system geometries. This has led to the development of many different models for the simulation of two-phase flow at specific conditions. These models vary greatly in complexity. The simplest model that can be used to simulate two-phase flow is termed the homogeneous equilibrium (HEM) two-phase flow model. This model has been found useful in investigations of choking and flashing flows, and as an initial investigative model used before the formulation of more complex models for specific applications. This flow model is fully de ned by three conservation equations, one each for mass, momentum and energy. To close the model, an equation of state (EOS) is required to deliver system pressure values. When solving the HEM, a general practice is to employ an equation of state that is derived from a fundamental expression of the second law of thermodynamics. This methodology has been proven to deliver accurate results for two-phase system simulations. This study focused on an alternative formulation of the equation of state which was previously developed for the time dependent modelling of HEM two-phase flow systems, termed the rate form of the equation of state (RFES). The goal of the study was not to develop a new formulation of the EOS, but rather to implement the RFES in a transient simulation model and to verify that this implementation delivers appropriate results when compared to the conventional implementation methodology. This was done by formulating a transient pipe and reservoir network model with the HEM, and closing the model using both the RFES and a benchmark EOS known to deliver accurate system property values. The results of the transient model simulations were then compared to determine whether the RFES delivered the expected results. It was found that the RFES delivered sufficiently accurate results for a variety of system transients, pressure conditions and numerical integration factors. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014
2

Application of the rate form of the equation of state for the dynamic simulation of thermal-hydraulic systems / Lambert Hendrik Fick

Fick, Lambert Hendrik January 2013 (has links)
The modelling of multi-phase water flow is an important modern-day design tool used by engineers to develop practical systems which are beneficial to society . Multi-phase water flow can be found in many important industrial applications such as large scale conventional and nuclear power systems, heat transfer machinery, chemical process plants, and other important examples. Because of many inherent complexities in physical two-phase flow processes, no generalised system of equations has been formulated that can accurately describe the two-phase flow of water at all flow conditions and system geometries. This has led to the development of many different models for the simulation of two-phase flow at specific conditions. These models vary greatly in complexity. The simplest model that can be used to simulate two-phase flow is termed the homogeneous equilibrium (HEM) two-phase flow model. This model has been found useful in investigations of choking and flashing flows, and as an initial investigative model used before the formulation of more complex models for specific applications. This flow model is fully de ned by three conservation equations, one each for mass, momentum and energy. To close the model, an equation of state (EOS) is required to deliver system pressure values. When solving the HEM, a general practice is to employ an equation of state that is derived from a fundamental expression of the second law of thermodynamics. This methodology has been proven to deliver accurate results for two-phase system simulations. This study focused on an alternative formulation of the equation of state which was previously developed for the time dependent modelling of HEM two-phase flow systems, termed the rate form of the equation of state (RFES). The goal of the study was not to develop a new formulation of the EOS, but rather to implement the RFES in a transient simulation model and to verify that this implementation delivers appropriate results when compared to the conventional implementation methodology. This was done by formulating a transient pipe and reservoir network model with the HEM, and closing the model using both the RFES and a benchmark EOS known to deliver accurate system property values. The results of the transient model simulations were then compared to determine whether the RFES delivered the expected results. It was found that the RFES delivered sufficiently accurate results for a variety of system transients, pressure conditions and numerical integration factors. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014
3

Analysis of Advanced Fuel Behaviour during Loss of Coolant Accident in Swedish Boiling Water Reactor

Breijder, Paul January 2011 (has links)
In accident analysis regarding nuclear power plants, it is very common to use thermal hydraulic system codes, such as TRACE, developed by U.S. NRC. In the case of licensing a power plant, this is one of the necessities. TRACE is a relatively new thermal hydraulic system code and a lot of knowledge is needed to implement it in a correct way, especially in accident analysis, where it is a requirement that the rules and statements in Appendix-K, dealing with criteria for ECCS-models, are modelled. In this thesis an improved model of a Swedish Boiling Water Reactor within TRACE is realized and tested. Afterwards, once a working and representative model has been obtained, a sensitivity study in conducted in order to investigate the sensitivity of TRACE for a couple of thermal hydraulic parameters. The sensitivity study is focussing on the eect of the peak cladding temperature, as well as the coolability of the nuclear fuel in terms of quenching and quench-front velocities. It is found to be hard to say unilaterally what the eect of changing a certain number of parameters on the reactor behaviour is. As it turns out to be, although strongly related, the peak cladding temperatures and the quench phenomena can behave dierently

Page generated in 0.046 seconds