Spelling suggestions: "subject:"thermisches brennverfahren"" "subject:"thermisches schreibverfahren""
1 |
Untersuchungen zur Inaktivierung von ausgewählten Krankheitserregern und Indikatororganismen im Boden bei der Anwendung von thermischen Verfahren und KalkWasiak, Krzysztof January 2009 (has links)
Zugl.: Giessen, Univ., Diss., 2009
|
2 |
Verbesserung der filtrationstechnischen Eigenschaften von Filterhilfsmitteln durch ein thermisches VerfahrenSchmid, Nikolaj Andrej. Unknown Date (has links)
Techn. Universiẗat, Diss., 2002--München.
|
3 |
Organisch modifizierte Schichtsilicate als thermische Polymerisationsinitiatoren für die Darstellung von Nanokompositen auf Basis von EpoxidenSchorsch, Oliver. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bremen.
|
4 |
Zur chemisch-technologischen Verwertung von gebrauchten Holzwerkstoffen und Holzrinden /Kraft, Redelf. January 2007 (has links)
Universiẗat, Diss.--Göttingen, 2006.
|
5 |
Thermal induced cracking of graniteWang, Fei 11 March 2020 (has links)
The impact of temperatures (up to 1000 °C) with various heating rates of 5 °C/min, 200 °C/min, 300 °C/min, and according to ISO 834 standard fire curve on physical, mechanical, and thermal properties, as well as thermo-mechanical behaviors of granites were investigated. A new methodology was proposed for the heterogeneity characterization of rocks at the grain-size level in numerical simulation. The thermo-mechanical constitutive law is developed by combining the temperature-dependent relations of granite properties with classical Mohr-Coulomb model with strain-softening and tension cut-off. The proposed modelling strategy is able to replicate the thermal induced cracking which results in reduced peak strength, pronounced softening and transition from brittle to ductile behaviour. Research results help to understand the damage mechanisms of granite caused by fire or other high temperature conditions, and can be used to develop guidelines for repair and maintenance as well as assessment of risks of tunnels and historical buildings after fire accidents.
|
6 |
Application of thermal methods to enhanced oil recovery: Numerical and experimental investigationsNassan, Taofik 28 January 2025 (has links)
Reservoir simulation is a powerful tool to model fluid flow within oil and gas reservoirs and predict their behaviour. This dissertation is devoted primarily to model some thermal enhanced oil recovery (TEOR) methods. Two software were used for this purpose and namely; Comsol Multiphysics® and CMG® (Computer Modelling Group). The dissertation can be classified into three parts and all of them are standalone that discuss different topics within TEOR.
The work starts with reviewing enhanced oil recovery (EOR) methods with concentration on thermal methods (TEOR) for heavy oil and bitumen. Basics of mathematical modelling of single, two-phase, and three-phase flow in porous media that is the base of all commercial and scientific reservoir simulation software are reviewed. Formulations of the set of representative PDEs are reviewed and other formulations are suggested and applied directly in subsequent sections in Comsol Multiphysics®.
Part-1:
The application of finite element method (FEM) in reservoir simulation has been discussed and evaluated using Comsol Multiphysics package which is based on Galerkin approach. In the demonstrated problems, the mathematical model is solved using mathematics module in Comsol Multiphysics. Energy equation in 1D, Buckley-Leverett benchmark, two-phase flow model on ¼ inverted 5-spot scheme in 3D, and SAGD process PDE model are all solved and discussed. FEM using Comsol Multiphysics looks promising at moderate mobility ratios.
Part-2:
A comparison of water flooding with steam injection in heavy oil reservoirs as secondary stage is demonstrated and discussed. The whole modelling was achieved by CMG-STARS. A comparison of five different scenarios is shown. SPE4 comparative project data were used for this purpose. The results showed that steam can achieve more recovery in a short period of time with an ultimate recovery factor higher than cold recovery followed by steam flooding process.
Part-3:
A series of flooding and in-situ combustion experimental work that has been achieved in Kazan Federal University in cooperation with Institute of Drilling Engineering and Fluid Mining (IBF) is elaborated briefly and discussed. Four experiments with different core samples (consolidated and unconsolidated) were run between 05-2020 and 05-2021. The samples were taken from a Russian extra-heavy oilfield with initial viscosity around 600,000 cP. The results were evaluated and a numerical model was built using CMG-STARS. The numerical results were correlating the experimental results. Relative permeability data were history matched for flooding processes and this data was used for in-situ combustion model. Modelling of the reactions in in-situ combustion was a challenge to match the experimental results. The final results showed that steam injection was not the best recovery method for this oilfield and in-situ combustion was the best available technique with the highest recovery factor.
|
7 |
Technische und wirtschaftliche Projektstudie zur Verwendung thermischer Verfahren zur Wasserstoffproduktion aus ausgeförderten ErdöllagerstättenBauer, Johannes Fabian 30 April 2024 (has links)
Erdöl und Erdgas liegen als flüssige Kohlenwasserstoffe in porösen Sedimentgesteinen im geologischen Untergrund vor. Um diese Kohlenwasserstoffe zu gewinnen, wird der Untergrund durch Tiefbohrungen zur Förderung erschlossen. Anschließend erfolgt die Förderung des Erdöls in drei Phasen: der Primär-, Sekundär- und Tertiärförderung. In der primären Phase wird Erdöl durch den Druck in der Lagerstätte gewonnen, in der sekundären Phase durch künstliche Aufrechterhaltung des Drucks und in der tertiären Phase durch technische Beeinflussung der strömungsmechanischen und thermodynamischen Eigenschaften des Erdöls. Dennoch verbleibt insbesondere bei Schweröllagerstätten ein Anteil von 45 bis 90 % des ursprünglich in der Lagerstätte vorhandenen Erdöls in der Lagerstätte. Aufgrund strömungsmechanischer und thermodynamischer Einschränkungen ist eine Gewinnung dieses Anteils technisch und/oder wirtschaftlich nicht möglich. Meist wird die Lagerstätte nach Abschluss der Förderung verfüllt und die übertägigen Anlagen zurückgebaut.
Zugleich steigt weltweit der Bedarf an Energiequellen, insbesondere an solchen, die für die Dekarbonisierung und Umstellung auf umweltschonende Energien benötigt werden. Wasserstoff wird voraussichtlich als chemischer Energieträger der zukünftige Schlüsselrohstoff für die Energiewende sein.
Diese Forschungsarbeit untersucht die Weiternutzung bzw. Erschließung ausgeförderter Erdöllagerstätten zur Wasserstoffgewinnungmittels thermischer Verfahren. Diese Verfahren orientieren sich an bereits etablierten Methoden für die übertägige Verfahrenstechnik. Durch das Verfahren wird die Lagerstätte mithilfe der Verbrennung des in dieser vorhandenen Restöls erhitzt und das entstehende Koks durch eine Wasserinjektion in Synthesegas umzuwandeln. Durch die hohen Temperaturen entsteht in der Lagerstätte eine Atmosphäre aus Wasserdampf, die zur Vergasung des Kokses führt. Das Gas wird durch die Wasserfront aus der Lagerstätte in die Produktionsbohrungen verdrängt und kann anschließend an der Oberfläche aufbereitet werden. Im Kontext der Lagerstättenprozesse entsteht nicht nur Wasserstoff, sondern auch weitere Verbrennungsprodukte wie Kohlenstoffmonoxid, Kohlenstoffdioxid, Sauergase und Kohlenwasserstoffgase. Diese werden verfahrenstechnisch aufbereitet und dampfreformiert in den obertägigen Anlagen. Zur Erfüllung der Anforderungen an blauen Wasserstoff ist die Reinjektion von Kohlenstoffdioxid erforderlich.
In der Dissertation wird ein numerisches Berechnungsschema eingeführt und ausführlich getestet, um die lagerstättentechnische Simulation der thermischen Wasserstoffgewinnung durchzuführen. Anhand von Modelllagerstätten werden mithilfe dieses Schemas relevante Prozessparameter ermittelt und für die Übertragung auf die konkrete Lagerstättensimulation aufbereitet. Das Verfahren zur Wasserstoffförderung wird an einer antiklinalen Lagerstätte mit geostatistischer Heterogenität simuliert. Die Ergebnisse werden zur weiteren Auswertung bezüglich Integritätsfragen, Übertageanlagen sowie wirtschaftlicher und strategischer Aspekte herangezogen.
|
Page generated in 0.0647 seconds