Spelling suggestions: "subject:"hermit."" "subject:"thermit.""
1 |
PHYSICAL METALLURGY AND PROCESS IMPROVEMENT OF THERMITE RAIL WELDS.SCHROEDER, LARRY CARL. January 1982 (has links)
This study was an evaluation of thermite rail welding with the goal of the development of welds with improved mechanical properties. The first part of the study involved an in-depth evaluation of 14 thermite rail welds produced by the Department of Transportation using current production practices. These welds were produced using CrMo, CrV and Cr alloy rails, AREA CC rails (i.e., standard rails) and head-hardened rails which were welded with weld metal produced by the aluminothermic reaction of "standard" and "alloy" thermite charges. Temperature at various locations was measured during welding for both the rails and the weld metal. After welding, mechanical properties, macro- and microstructure, inclusion levels and residual stresses induced by the welding operation were all determined. Low impact properties and ductility (2-6 percent reduction in area) were observed in the thermite rail weld metal. These low properties were attributed to microstructure and, to a lesser extent, inclusion content. In order to improve the process by reducing the inclusion content, attempts were made to filter the molten thermite steel by passing it through zirconia/mullite filters. This was included in the second part of the study in which 9 plate welds we made using "standard" thermite charges. Filtering, at best, was only partly successful. However, it was observed that a 30 percent increase in yield strength and hardness was achieved in weld metal containing approximately 0.55 percent carbon and 0.06 percent vanadium. Normalization of the plate welds resulted in a significant improvement in the tensile ductility of as-cast weld metal. Weld metal of 0.55 percent carbon and 0.06 percent vanadium had ductilities in the range of 10-20 percent when the cooling rate exceeded 37 K(DEGREES)/min. through the transformation range. At cooling rates of four times this level, tensile properties equivalent to those of the "alloy" weld metal were obtained along with the enhanced tensile ductility. It was concluded that it is possible to produce a thermite weld with both improved strength and ductility by the judicious control of composition, the addition of microalloying elements and the application of an appropriate post-weld heat treatment, such as normalization.
|
2 |
R65 tipo bėgio termitinio suvirinimo mechaninių savybių tyrimas / The investigation of machanical properties of welding quality of R65 typeRauduvė, Mindaugas 15 June 2010 (has links)
Baigiamajame magistro darbe nagrinėjama termitiniu būdu skirtingais parametrais suvirintų bėgių jungčių kokybė. Analizuojama termitinio suvirinimo mišinio kiekio bei pakaitinimo laiko įtaka suvirintų jungčių kokybei. Tam, kad būtų nustatytos suvirintų jungčių mechaninės savybės, buvo atlikti šie bandymai: viršutinės bėgio dalies kiečio bandymas, lėtojo lenkimo bandymas, termiškai suminkštintos zonos kiečio pasiskirstymo matavimas, ilgalaikiai bandymai. Tyrimais nustatyta kokią įtaką, turi suvirinus bėgių jungtis be pakaitinimo, esant skirtingiems pakaitinimo laikams ir skirtingam termito kiekiui. Remiantis gautais rezultatais pateiktos išvados. / In the final masters degree thesis examines the quality of using different parameters Aluminothermicaly welded rail joints. Influence of the quantity of Aluminothermic welding mixture for quality of welded joints, and heating time is analyzing. In order to determine the mechanical properties of welded joints following tests had been made: hardness test of upper part of the rail, long term bending test, hardness test of the distribution of heat-softened area, other long-term tests. Results of research have determined the influence of different heating time and different quanity of thermites content for welded joints without using heating. Based on this results the final conclusion was presented .
|
3 |
Reduzierte thermische Modelle für das gesamte Thermit-SchweißverfahrenManzke, Sebastian 17 November 2022 (has links)
Ziel der Dissertation ist die ebenso valide wie effiziente Vorhersage der Schmelz- und der Wärmeeinflusszone der Schweißverbindung beim Thermit-Schweißen. Dazu werden reduzierte Modelle vorgestellt, darunter ein niederdimensionales Modell des Schienenstegs und dreidimensionale Modelle des Gießsystems für das Schweißverfahren. Mit dem niederdimensionalen Modell werden mittels Parameterschätzung unbekannte Randbedingungen der Vorwärmung des Gießsystems ermittelt sowie mittels Sensitivitätsanalyse systematisch Einflüsse auf die Schmelz- und die Wärmeeinflusszone untersucht. Durch den systematischen Vergleich der vorgestellten Modelle werden Gültigkeitsgrenzen der Modelle gezielt auf die Modellreduktionen zurückgeführt und über die Modelle hinausgehende Aspekte für die Beschreibung des Schmelz- und Erstarrungsverhaltens identifiziert. Dabei wird die Validität der Modelle anhand von experimentellen Daten der Schmelz- und der Wärmeeinflusszone im Schienenlängsschnitt untersucht. / This dissertation aims at providing a valid and efficient prediction of the melting zone and heat-affected zone of thermite welds. For this purpose, reduced models are presented, including a low-dimensional model of the rail web and three-dimensional models of the casting system for the welding process. With the low-dimensional model, unknown boundary conditions of the preheating of the casting system are determined by means of parameter estimation and influences on the melting zone and the heat-affected zone are systematically examined by means of a sensitivity analysis. By a systematic comparison of the models presented, the validity limits of the models are specifically traced back to the model reductions and aspects beyond these models for the description of the melting and solidification behavior are identified. The validity of the models is examined on the basis of experimental data from the melting zone and the heat-affected zone in the longitudinal section of the rails.
|
4 |
Early Stages of the Aluminothermic Process: Insights into Separation and Mould FillingWeiß, Sebastian 16 April 2019 (has links)
The aluminothermic (AT) process utilises a self-propagating high-temperature synthesis (SHS) type reaction for producing primarily thermite steel and alumina slag at high temperatures during the welding of rails. In this work, an investigation on the early stages of the aluminothermic process, the separation of AT reaction products and mould filling has been carried out, using both experimental and computational methods to predict the time duration of a complete separation and to obtain a better understanding of the internal multiphase flow within the crucible and mould. The decomposition of AT reaction products after the combustion and the subsequent mould filling by thermite steel and alumina slag have been simulated numerically, using a diffusive phase field and volume-of-fluid model. However, to minimize numerical errors on the input parameters of the high-
temperature multiphase flow, a careful review on transport properties has been made. Missing data, e.g. the contact angle of thermite steel on waterglass-bonded mould and crucible wall material has been investigated experimentally. Being further necessary for the prediction of the separation time of AT reaction products in compacted thermite, results on the propagation front velocity show a decreasing trend with increasing initial compact temperature. Further, the combustion front velocity is used for a subsequent analysis of the separation time, which is obtained from the phase distribution of thermite steel, alumina slag and intermetallic compounds, using a combustion front quenching (CFQ) methodology. Moreover, geometric modifications on the crucible and mould have been developed for a reduction in changeover time, as well as an optimized multiphase flow field. Their performance during crucible discharge and mould filling has been verified numerically. Furthermore, alumina slag inclusions have been tracked within the mould using a volume-of-fluid approach with their final positions being verified through an authentic welding. / Während des aluminothermischen (AT) Prozesses findet eine SHS-Reaktion Anwendung, um primär Thermitstahl und Aluminiumoxidschlacke bei hohen Temperaturen für das Verschweißen von Bahnschienen herzustellen. In dieser Arbeit wurden Anfangsstadien, welche die Separation der AT-Reaktionsprodukte sowie das Füllen der Gießform einbeziehen, unter Anwendung von sowohl experimentellen als auch numerischen Verfahren untersucht. Damit konnte die Zeitdauer einer kompletten Separation ermittelt und ein genaueres Verständnis der Mehrphasenströmung in Tiegel und Gießform erlangt werden. Die Separation der AT-Reaktionsprodukte nach der aluminothermischen Reaktion und die anschließende Formfüllung wurden mit einem diffusen Phasenfeld und einem Volume-of-Fluid-Modell numerisch berechnet. Für die Minimierung numerischer Fehler in den Eingangsgrößen dieser Hochtemperatur-Mehrphasenströmungen wurde eine intensive Literaturrecherche durchgeführt und fehlende Parameter, wie zum Beispiel die Kontaktwinkel von Thermitstahl auf Wasserglas gebundenem Form- und Tiegelmaterial, wurden experimentell ermittelt. Messungen der Reaktionsfrontgeschwindigkeit in gepresstem Thermit sind notwendig für eine Vorhersage der Separationszeit der AT-Reaktionsprodukte, und die Ergebnisse zeigen einen linear abfallenden Trend mit zunehmender Anfangstemperatur des verdichteten Materials. In dieser Arbeit wurde die Geschwindigkeit der Reaktionsfront verwendet, um aus der Phasenverteilung von Thermitstahl, Aluminiumoxidschlacke und intermetallischen Verbindungen als Ergebnis des CFQ-Experimentes die Separationszeit in verdichtetem Thermit zu approximieren. Es wurden Modifikationen an Tiegel und Gießform erprobt, die für eine Verbesserung der internen Strömungsführung sowie für die Reduzierung der Umrüstzeit sorgen sollen. Die Effizienz dieser Veränderungen wurde anschließend mit numerischen Methoden überprüft. Des Weiteren konnten durch eine Realschweißung die numerisch vorhergesagten finalen Positionen von Schlackeeinschlüssen innerhalb der Gießform verifiziert werden.
|
Page generated in 0.0324 seconds