• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of subdivision techniques in product development

Gross, Nele. January 2004 (has links) (PDF)
Berlin, Techn. Univ., Diss., 2003. / Computerdatei im Fernzugriff.
2

Verschleissmechanismen und Standzeitoptimierung von Druckgiessformen

Liluashvili, Zurab January 2009 (has links)
Zugl.: Braunschweig, Techn. Univ., Diss., 2009
3

Einfluss des Formwerkstoffs auf Prozess- und Qualitätsparameter beim Druckgiessen

Haas, Michael January 2009 (has links)
Zugl. Magdeburg, Univ., Diss., 2009
4

Herstellung und Eigenschaften poröser Silikatkeramik für die keramische Formgebung /

Höfner, Thomas. January 2009 (has links)
Zugl.: Erlangen, Nürnberg, Universiẗat, Diss., 2009.
5

Automatisiertes Modellieren großflächiger Sandgussformen

Schaaf, Walter H., January 2005 (has links)
Stuttgart, Univ., Diss., 2005. / Print-Ausg. bei Jost-Jetter, Heimsheim erschienen.
6

Applications of subdivision techniques in product development

Gross, Nele. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Berlin.
7

Bonboo

Wolters, Marit 17 November 2023 (has links)
Porenbeton ist ein Material, das zwischen Architektur und Natur eine direkte Verbindung schafft. Er lässt dem Menschen Raum für die Gestaltung, passt sich der vorgegebenen Gussform an, wächst innerlich jedoch nach seinen eigenen Regeln. Die Luftblasen im Material bilden ein zelluläres Gebinde mit unregelmäßiger Struktur. Während des Gießens der im Studio experimentell gemischten Betonmasse beginnt diese, sich aufzublähen, zu brodeln und zu zischen. Wie ein organischer Zellhaufen, der wächst und atmet. Das erzeugte Material ist leichter als Normalbeton und durch die experimentelle Arbeit oft fragil.
8

Untersuchungen zwischen Belastungen und Belastbarkeiten beim Herstellen tongebundener Formen

Abdullah, Eva 27 August 2014 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurde versucht, Gesetzmäßigkeiten zwischen Kenngrößen aus dem Formstofflabor und einer praxisnahen kleintechnischen Formanlage abzuleiten. Der Zweck besteht darin, einen Fehler bei der Formherstellung (insbesondere Ballenabrisse) zu vermeiden. Dazu wurden zahlreiche Untersuchungen sowohl im Formstofflabor als auch an der Versuchsanlage vorgenommen. Dies gleicht in ihrer Funktionsweise betrieblichen Formanlagen mit unterschiedlichen Verdichtungsmöglichkeiten. Bei den Untersuchungen wurden Formstoffzusammensetzungen variiert, konstruktive Änderungen an der Formmaschine vorgenommen und die Formballen mit unterschiedlichen Formschrägen versehen. Zur Beurteilung der Gebrauchstauglichkeit einer Grünsandform müssen die Beanspruchbarkeiten größer als die entstehenden Beanspruchungen oder zumindest gleich sein. Dazu wurde eine neue Methode zur Bestimmung der Ballenabrissneigung unter Einsatz eines variablen Gießereimodells entwickelt. Durch eine zielgerichtete Kombination der an der Formherstellung beteiligten Komponenten: Formstoff, Formmaschine und Formprozess ließen sich qualitätsgerechte Formen herstellen und die Ergebnisse erfolgreich auf die betriebliche Praxis übertragen.
9

Untersuchungen zwischen Belastungen und Belastbarkeiten beim Herstellen tongebundener Formen: Untersuchungen zwischen Belastungen und Belastbarkeiten beim Herstellen tongebundener Formen

Abdullah, Eva 30 June 2014 (has links)
Im Rahmen der vorliegenden Arbeit wurde versucht, Gesetzmäßigkeiten zwischen Kenngrößen aus dem Formstofflabor und einer praxisnahen kleintechnischen Formanlage abzuleiten. Der Zweck besteht darin, einen Fehler bei der Formherstellung (insbesondere Ballenabrisse) zu vermeiden. Dazu wurden zahlreiche Untersuchungen sowohl im Formstofflabor als auch an der Versuchsanlage vorgenommen. Dies gleicht in ihrer Funktionsweise betrieblichen Formanlagen mit unterschiedlichen Verdichtungsmöglichkeiten. Bei den Untersuchungen wurden Formstoffzusammensetzungen variiert, konstruktive Änderungen an der Formmaschine vorgenommen und die Formballen mit unterschiedlichen Formschrägen versehen. Zur Beurteilung der Gebrauchstauglichkeit einer Grünsandform müssen die Beanspruchbarkeiten größer als die entstehenden Beanspruchungen oder zumindest gleich sein. Dazu wurde eine neue Methode zur Bestimmung der Ballenabrissneigung unter Einsatz eines variablen Gießereimodells entwickelt. Durch eine zielgerichtete Kombination der an der Formherstellung beteiligten Komponenten: Formstoff, Formmaschine und Formprozess ließen sich qualitätsgerechte Formen herstellen und die Ergebnisse erfolgreich auf die betriebliche Praxis übertragen.:Inhaltsverzeichnis 1. Einleitung 5 2. Wissenschaftlich-technische Problem- und Zielstellung 7 2.1 Problemstellung 7 2.2 Zielstellung 11 3. Literaturrecherche zum Stand der Technik 13 3.1 Formstoffmischungen und Formherstellung 13 3.1.1 Bestandteile der Formstoffmischungen 13 3.1.2 Mischen des Formstoffs 15 3.1.3 Eigenschaften tongebundener Formstoffe 15 3.1.3.1 Verdichtbarkeit 15 3.1.3.2 Prüfungen mit Probekörpern 16 3.1.3.2.1 Gasdurchlässigkeit 16 3.1.3.2.2 Grünfestigkeitseigenschaften 17 3.1.4 Formherstellungsverfahren mit tongebundenen Formstoffen 17 3.2 Formmaschinen und ihre Verdichtungsmöglichkeiten 19 3.3 Herstellung von Formen mit Ballen: 22 3.3.1 Ballenabrisse (Formenbruch) 23 3.3.1.1 Entstehung 24 3.3.1.2 Mögliche Ursachen 27 3.3.1.3 Vermeidung 27 3.4 Fließverhalten und Haftkräfte 28 3.4.1 Fließen des Formstoffs im Ballen 32 3.4.2 Technologische Fließbarkeitsmessmethoden 34 3.5 Qualitätskontrolle der Form 34 3.5.1 Dichte der Form 35 3.5.2 Messung der Formdichte 36 3.6 Analyse des Standes der Technik 37 4 Schaffung konstruktiver Voraussetzungen 39 4.1 Apparative Voraussetzungen im Labor 39 4.1.1 Bestimmung der Verdichtbarkeit: 39 4.1.2 Ermittlung der Adhäsionskräfte 40 4.2 Versuchsdurchführung und konstruktive Voraussetzungen an der kleintechnischen Anlage 42 4.3 Konstruktive Veränderungen der Formmaschinenbauteile 45 4.3.1 Dosiereinrichtung mit einflügeligen Klappen 45 4.3.2 Druckteller mit Verstrebungen und Modellplattenträger mit Verrippungen 47 4.3.3 Vielstempelpresse 49 4.4 Entwicklung einer Methodik zur Trennkraftmessung 52 4.5 Vervollkommnung und Anpassung des mathematischen Modells zur Berechnung der Ballenabrissneigung beim Form-Modell-Trennen 53 5. Versuchsbeschreibung 56 5.1 Laboruntersuchungen 56 5.1.1 Formstoffaufbereitung: 56 5.1.2 Bestimmung der Festigkeitseigenschaften 57 5.1.3 Eigenschaften der eingesetzten Formstoffe 59 5.1.3.1 Zugfestigkeits- und Adhäsionskraftmessungen im Labor 61 5.1.3.2 Ermittlung der Dichte 64 5.1.3.3 Ermittlung der Zugfestigkeit (Kohäsion) 65 5.2 Untersuchungen mit der Multi-Compact-Formanlage 67 5.2.1 Formstoffaufbereitung und Verdichtbarkeitsbestimmung 67 5.2.2 Festigkeitsbestimmung 68 5.2.3 Dichtebestimmung 69 5.2.4 Konsequenzen 73 5.2.5 Versuche mit ebener Pressplatte 75 5.2.5.1 Seitendruckmessung 77 5.2.5.2 Problemlösungen 80 5.2.6 Seitendruckmessung und Vergleich mit ebener Pressplatte 82 5.2.7 Impulspressen 83 5.2.8 Messung der Trennkräfte 86 5.2.9 Einfluss der geometrischen Bedingungen auf die Trennkräfte und die Entstehung vom Ballenabrissen 90 5.2.9.1 Modellbeispiel Zylinder Höhe 50 mm und Durchmesser 50 mm 92 5.2.9.2 Messung der Adhäsionskräfte des Ballens in der Modelleinrichtung 93 5.2.9.3 Effektivdruckmessungen 97 5.3 Gebrauchsfähigkeitstest des geformten Ballens 98 6. Zusammenfassung 100 7. Literaturverzeichnis 102
10

Early Stages of the Aluminothermic Process: Insights into Separation and Mould Filling

Weiß, Sebastian 16 April 2019 (has links)
The aluminothermic (AT) process utilises a self-propagating high-temperature synthesis (SHS) type reaction for producing primarily thermite steel and alumina slag at high temperatures during the welding of rails. In this work, an investigation on the early stages of the aluminothermic process, the separation of AT reaction products and mould filling has been carried out, using both experimental and computational methods to predict the time duration of a complete separation and to obtain a better understanding of the internal multiphase flow within the crucible and mould. The decomposition of AT reaction products after the combustion and the subsequent mould filling by thermite steel and alumina slag have been simulated numerically, using a diffusive phase field and volume-of-fluid model. However, to minimize numerical errors on the input parameters of the high- temperature multiphase flow, a careful review on transport properties has been made. Missing data, e.g. the contact angle of thermite steel on waterglass-bonded mould and crucible wall material has been investigated experimentally. Being further necessary for the prediction of the separation time of AT reaction products in compacted thermite, results on the propagation front velocity show a decreasing trend with increasing initial compact temperature. Further, the combustion front velocity is used for a subsequent analysis of the separation time, which is obtained from the phase distribution of thermite steel, alumina slag and intermetallic compounds, using a combustion front quenching (CFQ) methodology. Moreover, geometric modifications on the crucible and mould have been developed for a reduction in changeover time, as well as an optimized multiphase flow field. Their performance during crucible discharge and mould filling has been verified numerically. Furthermore, alumina slag inclusions have been tracked within the mould using a volume-of-fluid approach with their final positions being verified through an authentic welding. / Während des aluminothermischen (AT) Prozesses findet eine SHS-Reaktion Anwendung, um primär Thermitstahl und Aluminiumoxidschlacke bei hohen Temperaturen für das Verschweißen von Bahnschienen herzustellen. In dieser Arbeit wurden Anfangsstadien, welche die Separation der AT-Reaktionsprodukte sowie das Füllen der Gießform einbeziehen, unter Anwendung von sowohl experimentellen als auch numerischen Verfahren untersucht. Damit konnte die Zeitdauer einer kompletten Separation ermittelt und ein genaueres Verständnis der Mehrphasenströmung in Tiegel und Gießform erlangt werden. Die Separation der AT-Reaktionsprodukte nach der aluminothermischen Reaktion und die anschließende Formfüllung wurden mit einem diffusen Phasenfeld und einem Volume-of-Fluid-Modell numerisch berechnet. Für die Minimierung numerischer Fehler in den Eingangsgrößen dieser Hochtemperatur-Mehrphasenströmungen wurde eine intensive Literaturrecherche durchgeführt und fehlende Parameter, wie zum Beispiel die Kontaktwinkel von Thermitstahl auf Wasserglas gebundenem Form- und Tiegelmaterial, wurden experimentell ermittelt. Messungen der Reaktionsfrontgeschwindigkeit in gepresstem Thermit sind notwendig für eine Vorhersage der Separationszeit der AT-Reaktionsprodukte, und die Ergebnisse zeigen einen linear abfallenden Trend mit zunehmender Anfangstemperatur des verdichteten Materials. In dieser Arbeit wurde die Geschwindigkeit der Reaktionsfront verwendet, um aus der Phasenverteilung von Thermitstahl, Aluminiumoxidschlacke und intermetallischen Verbindungen als Ergebnis des CFQ-Experimentes die Separationszeit in verdichtetem Thermit zu approximieren. Es wurden Modifikationen an Tiegel und Gießform erprobt, die für eine Verbesserung der internen Strömungsführung sowie für die Reduzierung der Umrüstzeit sorgen sollen. Die Effizienz dieser Veränderungen wurde anschließend mit numerischen Methoden überprüft. Des Weiteren konnten durch eine Realschweißung die numerisch vorhergesagten finalen Positionen von Schlackeeinschlüssen innerhalb der Gießform verifiziert werden.

Page generated in 0.0288 seconds