• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermo-Mechanical Behavior of Energy Piles: Full-Scale Field Testing and Numerical Modeling

Sutman, Melis 09 September 2016 (has links)
Energy piles are deep foundation elements designed to utilize near-surface geothermal energy, while at the same time serve as foundations for buildings. The use of energy piles for geothermal heat exchange has been steadily increasing during the last decade, yet there are still pending questions on their thermo-mechanical behavior. The change in temperature along energy piles, resulting from their employment in heat exchange operations, causes axial displacements, thermally induced axial stresses and changes in mobilized shaft resistance which may have possible effects on their behavior. In order to investigate these effects, an extensive field test program, including conventional pile load tests and application of heating-cooling cycles was conducted on three energy piles during a period of six weeks. Temperature changes were applied to the test piles with and without maintained mechanical loads to investigate the effects of structural loads on energy piles. Moreover, the lengths of the test piles were determined to represent different end-restraining conditions at the toe. Various sensors were installed to monitor the strain and temperature changes along the test piles. Axial stress and shaft resistance profiles inferred from the field test data along with the driven conclusions are presented herein for all three test piles. It is inferred from the field test results that changes in temperature results in thermally induced compressive or tensile axial stresses along energy piles, the magnitude of which increases with higher restrictions such as structural load on top or higher toe resistance. Moreover, lower change in shaft resistance is observed with increasing restrictions along the energy piles. In addition to the design, deployment, and execution of the field test, a thermo-mechanical cyclic numerical model was developed as a part of this research. In this numerical model, load-transfer approach was coupled with the Masing's Rule in order to simulate the two-way cyclic axial displacement of energy piles during temperature changes. The numerical model was validated using the field test results for cyclic thermal load and thermo-mechanical load applications. It is concluded that the use of load-transfer approach coupled with the Masing's Rule is capable of simulating the cyclic thermo-mechanical behavior of energy piles. / Ph. D.
2

Nonlinear Analysis of Conventional and Microstructure Dependent Functionally Graded Beams under Thermo-mechanical Loads

Arbind, Archana 2012 August 1900 (has links)
Nonlinear finite element models of functionally graded beams with power-law variation of material, accounting for the von-Karman geometric nonlinearity and temperature dependent material properties as well as microstructure dependent length scale have been developed using the Euler-Bernoulli as well as the first-order and third- order beam theories. To capture the size effect, a modified couple stress theory with one length scale parameter is used. Such theories play crucial role in predicting accurate deflections of micro- and nano-beam structures. A general third order beam theory for microstructure dependent beam has been developed for functionally graded beams for the first time using a modified couple stress theory with the von Karman nonlinear strain. Finite element models of the three beam theories have been developed. The thermo-mechanical coupling as well as the bending-stretching coupling play significant role in the deflection response. Numerical results are presented to show the effect of nonlinearity, power-law index, microstructural length scale, and boundary conditions on the bending response of beams under thermo-mechanical loads. In general, the effect of microstructural parameter is to stiffen the beam, while shear deformation has the effect of modeling more realistically as a flexible beam.

Page generated in 0.0877 seconds