• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparative Life Cycle Assessments of Lignocellulosic and Algae Biomass Conversion to Various Energy Products through Different Pathways

Pinilla, Maria Juliana 01 January 2011 (has links)
Bioenergy has the potential to reduce the world's dependence on fossil fuels, and to decrease the CO2 emissions due to fossil combustion. Lignocellulosic and algae biomass have been presented as promising feedstocks for bioenergy production. In this study, a comparative Life Cycle Assessment (LCA) has been developed to evaluate the environmental impacts associated with different energy products via different routes across the whole life of algal and lignocellulosic bioenergy. Results were compared per energy basis, the production of 1 million BTU of energy products. For the development of the comparative algae biomass conversion LCA, algal biomass was converted to liquid biofuels via a thermochemical gasification and Fisher-Tropsch Synthesis (FTS) process; and to electricity and heat via anaerobic digestion and combined heat and power (CHP) process. Overall results from the algae biomass conversion LCA showed that the process that converts algae biomass through anaerobic digestion and CHP process to electricity and heat had the highest overall environmental impact. Results also showed that the impact categories that appear to contribute the most to the overall impacts are ecotoxicity, human health non-cancer, and human health cancer. For the development of the comparative lignocellulosic biomass conversion LCA, lignocellulosic biomass was converted to ethanol and higher alcohols through thermochemical gasification and alcohol synthesis process, to liquid biofuels via thermochemical gasification and FTS process, and to liquid biofuels via a thermochemical gasification and FTS process that uses methane. Overall results from the lignocellulosic biomass conversion LCA showed that the process that converts lignocellulosic biomass into alcohols has the highest overall environmental impact. Results also showed that the impact categories that appear to contribute the most to the overall impacts are ecotoxicity, human health non-cancer, human health cancer, and global warming. This study determined that cultivated algae biomass feedstock has much higher environmental impacts compared with lignocellulosic biomass feedstock from forestation and agriculture byproducts. It was also concluded that thermochemical gasification and FTS process showed higher efficiency when converting biomass to bioenergy. In addition, the five biomass to bioenergy conversion pathways used in the development of this LCA study were compared. Results showed that the pathway with lignocellulosic biomass (feedstock), thermochemical gasification and alcohol synthesis process (conversion process), and ethanol and higher alcohols (energy products) has the largest environmental impact.

Page generated in 0.0973 seconds