• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 2
  • Tagged with
  • 24
  • 24
  • 21
  • 20
  • 18
  • 17
  • 16
  • 16
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Paroplynová turbína pro akumulaci energie / Steam-gas turbine for energy storage

Staněk, Štěpán January 2020 (has links)
Master thesis discusses the growing need of electric energy storage and its effectivity and capacity. It describes an overview of possible technologies with their advantages and disadvantages. Greater attention is paid to the storage of energy in gas, so-called Power to Gas, which combines the electrolytic production of hydrogen from water and the Sabatier reaction to produce synthetic methane. This technology is introduced in the so-called SIT Brno cycle of Siemens Industrial Turbomachinery company. The main part of the thesis is focused on the description of this cycle and on the calculation of the steam-gas turbine (high-pressure and low pressure module). This thesis describes the methodology of turbine calculation and the composition of the steam gas mixture after combustion of methane. The carbon dioxide formed by combustion in the steam-gas mixture generator was replaced by steam. Part of the diploma thesis are drawings of cross-section of individual turbine modules.
22

Vzduchem chlazený kondenzátor / Air-cooled condenser

Kloda, Michal January 2015 (has links)
The Master’s thesis dealing with air-cooled condensers is split into four sections. The first section shows an overview of air cooling, introduction into air-cooled condensers of A-frame shape and finned tubes. The second section deals with heat transfer on the steam side and deals with trapped incondensables on the steam side of ACC. The third section deals with heat transfer on the air side, shows a brief overview of fans and selected problems on the air side. In the last section the simplified thedmodynamic calculation of air-cooled condenser is shown.
23

Parní kondenzační turbína / Steam condensing turbine

Štěpánová, Lenka January 2017 (has links)
The aim of this Master’s thesis is to design a steam condensing turbine with three bleeds. First, a heat balance of the steam cycle is calculated, followed by thermodynamic and stress calculation of the turbine blading and design of a gland steam system and drain system. A price proposal is suggested for the given steam turbine. In the end, a design drawing of the steam turbine is constructed.
24

High temperature corrosion in a biomass-fired power boiler : Reducing furnace wall corrosion in a waste wood-fired power plant with advanced steam data

Alipour, Yousef January 2013 (has links)
The use of waste (or recycled) wood as a fuel in heat and power stations is becoming more widespread in Sweden (and Europe), because it is CO2 neutral with a lower cost than forest fuel. However, it is a heterogeneous fuel with a high amount of chlorine, alkali and heavy metals which causes more corrosion than fossil fuels or forest fuel. A part of the boiler which is subjected to a high corrosion risk is the furnace wall (or waterwall) which is formed of tubes welded together. Waterwalls are made of ferritic low-alloyed steels, due to their low price, low stress corrosion cracking risk, high heat transfer properties and low thermal expansion. However, ferritic low alloy steels corrode quickly when burning waste wood in a low NOx environment (i.e. an environment with low oxygen levels to limit the formation of NOx). Apart from pure oxidation two important forms of corrosion mechanisms are thought to occur in waste environments: chlorine corrosion and alkali corrosion. Although there is a great interest from plant owners to reduce the costs associated with furnace wall corrosion very little has been reported on wall corrosion in biomass boilers. Also corrosion mechanisms on furnace walls are usually investigated in laboratories, where interpretation of the results is easier. In power plants the interpretation is more complicated. Difficulties in the study of corrosion mechanisms are caused by several factors such as deposit composition, flue gas flow, boiler design, combustion characteristics and flue gas composition. Therefore, the corrosion varies from plant to plant and the laboratory experiments should be complemented with field tests. The present project may thus contribute to fill the power plant corrosion research gap. In this work, different kinds of samples (wall deposits, test panel tubes and corrosion probes) from Vattenfall’s Heat and Power plant in Nyköping were analysed. Coated and uncoated samples with different alloys and different times of exposure were studied by scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), X-ray diffraction (XRD) and light optical microscopy (LOM). The corrosive environment was also simulated by Thermo-Calc software. The results showed that a nickel alloy coating can dramatically reduce the corrosion rate. The corrosion rate of the low alloy steel tubes, steel 16Mo3, was linear and the oxide scale non-protective, but the corrosion rate of the nickel-based alloy was probably parabolic and the oxide much more protective. The nickel alloy and stainless steels showed good corrosion protection behavior in the boiler. This indicates that stainless steels could be a good (and less expensive) alternative to nickel-based alloys for protecting furnace walls. The nickel alloy coated tubes (and probe samples) were attacked by a potassium-lead combination leading to the formation of non-protective potassium lead chromate. The low alloy steel tubes corroded by chloride attack. Stainless steels were attacked by a combination of chlorides and potassium-lead. The Thermo-Calc modelling showed chlorine gas exists at extremely low levels (less than 0.1 ppm) at the tube surface; instead the hydrated form is thermodynamically favoured, i.e. gaseous hydrogen chloride. Consequently chlorine can attack low alloy steels by gaseous hydrogen chloride rather than chlorine gas as previously proposed. This is a smaller molecule than chlorine which could easily diffuse through a defect oxide of the type formed on the steel. / <p>QC 20130423</p>

Page generated in 0.1163 seconds