Spelling suggestions: "subject:"thermodynamic equilibrium"" "subject:"hermodynamic equilibrium""
41 |
Modélisation physique et simulations numériques des écoulements dans les disjoncteurs électriques haute tensionNichele, Sylvain 13 October 2011 (has links)
Les simulations numériques sont devenues un outil indispensable dans la conception des chambres de coupure des disjoncteurs électriques haute tension. Elles sont utilisées non seulement dans le dimensionnement des différentes pièces, mais elles fournissent également une aide précieuse dans la compréhension des phénomènes intervenant entre les deux électrodes au moment de la coupure. L’arc électrique généré entre ces deux électrodes rassemble de nombreux domaines de la physique plus ou moins complexes. Tous ces phénomènes ne sont pas encore parfaitement compris. Avec l’évolution de la puissance de calcul, ces simulations peuvent prendre en compte de plus en plus de phénomènes. Mais pour des raisons de temps de développement, la question des phénomènes à prendre en compte dans ces simulations se pose. Le but de telles simulations est de déterminer de manière rapide si une configuration est plus ou moins capable qu’une autre de couper sous une contrainte donnée. Ainsi, il est important de prendre en compte uniquement les phénomènes physiques importants et nécessaires pour avoir une réponse la plus décisive possible et la plus rapide possible, de la réussite ou non à la coupure d’une configuration testée. Dans cette thèse, nous nous sommes particulièrement intéressés aux déséquilibres thermiques et chimiques qui pourraient intervenir dans les disjoncteurs électriques haute tension au moment de la coupure. En effet, pour des raisons de temps et de coût de calcul, la plupart des simulations numériques actuelles sont réalisées en faisant une hypothèse forte : l’hypothèse d’Equilibre Thermodynamique Local (ETL). Cette hypothèse consiste à considérer que dans chaque maille de notre domaine d’étude et à chaque pas de temps, on a un équilibre thermodynamique réalisé. Faire cette hypothèse nous permet d’utiliser les lois de conservation (masse, quantité de mouvement et énergie) en allégeant le problème. Mais en réalité, cette hypothèse est mise à mal dès que l’on est en présence de forts gradients de température ou de densité. Pour réaliser ces simulations, le code numérique CARBUR a été utilisé. Des modules d’arc électrique (effet Joule et rayonnement) et d’électrode mobile ont été implémentés afin de pouvoir simuler au mieux le comportement du gaz présent dans les disjoncteurs électriques haute tension. Six études différentes ont été réalisées et sont présentées. Ces études portent sur les influences de la forme du bout des électrodes, d’une modélisation en Navier-Stokes par rapport à une modélisation en Euler, de la nature du gaz (SF6, CO2 et N2), du déséquilibre thermique dans le cas de l’azote ou encore du positionnement des termes sources de l’arc électrique dans les différentes équations d’évolution des énergies. Dans ce travail, une étude sur différents modèles cinétiques chimiques est proposée. Dans ces modèles, 5 espèces chimiques sont présentes : N2, N, N+, N2+ et e-. En ce qui concerne la température, on en distingue 4 : T, TVib-N2, TVib-N2+ et Te. / The numerical simulations are become a very important tool to design the high voltage circuit breaker (HVCB) chamber. They help for the understanding of the different phenomena which can take place between the 2 electrodes during an interruption process. The electric arc brings together many fields of physics more or less complex and many of these phenomena are still poorly studied. So many aspects remain to be explored to improve simulations. With the increase of the calculation power, these numerical simulations can take into account more phenomena. However, for reasonable simulation times, we need to know which phenomena are preponderant. The aim of these numerical simulations is to rapidly conclude on the capacity of geometry to success an interruption process compared to different other geometries, under a given stress. In this PhD dissertation, we are particularly interested on thermal and chemical non equilibrium that can occur in HVCB during an interruption process. Currently, most simulations are carried out with a strong hypothesis: the hypothesis of Local Thermodynamic Equilibrium (LTE). This assumption allows us to alleviate the problem and to reduce the computing time. But this assumption becomes not valid when high temperature or density gradients occur. To do these simulations, the CARBUR numerical code has been used. In order to simulate flow behaviors in HVCB, an electrical arc (Joule effect and radiation) model and a module of mobile electrode have been added. Six different studies have been done and are presented: influence of the electrode shape, influence of the Navier-Stokes equations compared to the Euler equations, influence of the gas (SF6, CO2 et N2), influence of the thermal non equilibrium in a nitrogen case, influence of the position of the arc source terms in the different energy equations. In this work, a study on different nitrogen chemical kinetics is proposed. In these models, 5 chemical species are distinguished: N2, N, N+, N2+ and e-. Finally, 4 different temperatures are used: T, TVib-N2, TVib-N2+ and Te.
|
42 |
Cooling ions and molecules and thermodynamical equilibria in a 22-pole trapMogo, César 18 December 2010 (has links) (PDF)
Two gas-phase ion-molecule reaction systems are presented here based on
measurements done in a temperature variable 22-pole trapping machine. In the first case, the proton affinity of methane is determined based on a new technique for measuring the equilibrium constant of the HCO2+ + CH4 <=>
CH5+ + CO2 reaction. The second case reports to the (Ar + N2 )+ reaction system, with reaction rate temperature dependencies measurements made both in the forward and reverse direction with different and complementary methods. The temperature variable 22-pole trapping machine allows one to determine equilibrium constants and reaction rate coefficients over a wide range of temperatures. The coupling of an effusive beam to the setup overcomes the problem of neutral gas wall condensation and extends the temperature range measurements beyond condensation point. The introduction (Chapter 1) gives a short overview about the rf technology and parallel experimental techniques developed in order to better characterize and understand the several mechanisms related to ion-molecule reactions. It also focuses some aspects of reaction rate temperature dependencies determination as well as thermodynamical equilibrium in laboratory environment. A short description of the setup and experimental methods are presented in Chapter 2. Based on equilibrium constant measurements, Chapter 3 is dedicated to the proton affinity of methane. This concept has applications on several fields such as atmospheric and combustion modelling, or testing empirical and ab initio theories for electronic structures. The (Ar − N2 )+ system presented in Chapter 4, is known for being a good case study for inferring the role of vibrational excitation in reaction dynamics and to the existence of non-adiabatic coupling. The experimental results here presented for the N2+ + Ar reaction demonstrate that it is possible to avoid parallel reactions with first vibrational excited state of nitrogen (N2 (ν = 1)). On the other hand, the reverse reaction experiments confirm the existence of a minimum of the reaction rate in the 30 to 300 K range, due to the existence of two reaction channels. The question of the high rate coefficient towards lower temperatures being related to the N2 rotational ground state population is raised. A summary and outlook are presented in Chapter 5, where some new possible paths of investigation are pointed out.
|
43 |
Cooling ions and molecules and thermodynamical equilibria in a 22-pole trapMogo, César 27 October 2010 (has links)
Two gas-phase ion-molecule reaction systems are presented here based on
measurements done in a temperature variable 22-pole trapping machine. In the first case, the proton affinity of methane is determined based on a new technique for measuring the equilibrium constant of the HCO2+ + CH4 <=>
CH5+ + CO2 reaction. The second case reports to the (Ar + N2 )+ reaction system, with reaction rate temperature dependencies measurements made both in the forward and reverse direction with different and complementary methods. The temperature variable 22-pole trapping machine allows one to determine equilibrium constants and reaction rate coefficients over a wide range of temperatures. The coupling of an effusive beam to the setup overcomes the problem of neutral gas wall condensation and extends the temperature range measurements beyond condensation point. The introduction (Chapter 1) gives a short overview about the rf technology and parallel experimental techniques developed in order to better characterize and understand the several mechanisms related to ion-molecule reactions. It also focuses some aspects of reaction rate temperature dependencies determination as well as thermodynamical equilibrium in laboratory environment. A short description of the setup and experimental methods are presented in Chapter 2. Based on equilibrium constant measurements, Chapter 3 is dedicated to the proton affinity of methane. This concept has applications on several fields such as atmospheric and combustion modelling, or testing empirical and ab initio theories for electronic structures. The (Ar − N2 )+ system presented in Chapter 4, is known for being a good case study for inferring the role of vibrational excitation in reaction dynamics and to the existence of non-adiabatic coupling. The experimental results here presented for the N2+ + Ar reaction demonstrate that it is possible to avoid parallel reactions with first vibrational excited state of nitrogen (N2 (ν = 1)). On the other hand, the reverse reaction experiments confirm the existence of a minimum of the reaction rate in the 30 to 300 K range, due to the existence of two reaction channels. The question of the high rate coefficient towards lower temperatures being related to the N2 rotational ground state population is raised. A summary and outlook are presented in Chapter 5, where some new possible paths of investigation are pointed out.
|
44 |
Le Bilan écologique. Mesurer la perturbation anthropogénique de l’Ecosphère et de la Biosphère (un bilan de l'Anthropocène). Caractériser les voies du Développement écologique des territoires. / The ecological Balance sheet. Measuring the anthropogenic disturbance of the Ecosphere and the Biosphere (an Anthropocene assessment). Characterizing the ways of the territories ecological development.Loiret, Richard 27 January 2016 (has links)
(Résumé de la thèse) Ayant constaté l’échec de ses Objectifs 2010 pour la biodiversité, dont, entre autres, l’incapacité de l’Empreinte écologique à rendre compte de la biodiversité, la Convention sur la Diversité Biologique a adopté en 2011 "Les objectifs d’Aichi (2011-2020) pour la biodiversité". Parmi ceux-ci les objectifs 1 et 2 concernent la prise de conscience des valeurs de la biodiversité, leur intégration dans les processus de planification nationaux et locaux de développement, et leur incorporation dans les comptabilités nationales. Ce en quoi ces objectifs de la CDB convergent désormais avec ceux des Nations Unies concernant le Système de Comptabilité Economique et Environnementale (SCEE). La présente thèse s’inscrit dans ce cadre de questionnement unifié. Elle a le double objectif : (a) de rechercher, fonder et mettre au point une unité de mesure biophysique de la diversité biologique caractérisant tout aussi bien l’ordre naturel que le désordre anthropogénique, et (b) d’incorporer celle-ci dans un nouveau système de comptabilité physique, le Bilan écologique. Celui-ci est susceptible de comparer, à toutes échelles territoriales, le Passif écologique des collectivités urbaines, vu comme le reflet biophysique de leur comptabilité monétaire, à l’Actif écologique de leurs espaces naturels, afin de révéler les relations de cause à effet, et de signifier les impacts cumulés de la perturbation anthropogénique sur l’Ecosphère et la Biosphère. Il aurait ainsi vocation, à terme, à nous permettre de caractériser les voies d’un développement véritablement écologique des territoires. / (Abstract of the thesis) Having noted the failure of its 2010 targets for biodiversity, including, among others, the inability of the Ecological Footprint to account for biodiversity, the Convention on Biological Diversity adopted in 2011 "The 2011-2020 Aichi Targets for biodiversity". Among these, objectives 1 and 2 concern awareness of the values of biodiversity, their integration into national and local development planning process, and their incorporation into national accounts. This how these objectives of the CBD converge now with those of the United Nations for the System of Environmental-Economic Accounting (SEEA). This thesis lie within this unified questioning framework. It has the double purpose : (a) of searching for, founding and developing a biophysical measurement unit of biodiversity, characterizing just as well the natural order as the anthropogenic disorder, and (b) to incorporate it into a new physical accounting system, the Ecological balance sheet. The latter is likely to compare, for all territorial scales, the Ecological liability of urban communities, seen as the biophysical reflection of their monetary accounting, to the Ecological asset of their natural spaces, in order to reveal the relationships of cause and effect, and to signify the cumulative impacts of anthropogenic disturbance on the Ecosphere and the Biosphere. In the end, it would have so vocation to enable us to characterize the ways of a truly ecological development of the territories.
|
Page generated in 0.068 seconds