Spelling suggestions: "subject:"thermodynamics"" "subject:"hermodynamics""
611 |
SiC Growth by Laser CVD and Process AnalysisMi, Jian 07 April 2006 (has links)
The goal of this research is to investigate how to deposit SiC material from methyltrichlorosilane (MTS) and H2 using the LCVD technique. Two geometries were targeted, fiber and line. In order to eliminate the volcano effect for LCVD-SiC deposition, a thermodynamics model was developed to check the feasibility and determine the deposition temperature ranges that will not cause the volcano effect, theoretically. With the aid of the thermodynamic calculations and further experimental explorations, the processing conditions for SiC fibers and lines without volcano effect were determined. The experimental relationships between the volcano effect and the deposition temperatures were achieved. As for the SiC lines, the deposition conditions for eliminating volcano effect were determined with the help of surface response experiment and the experience of SiC fiber depositions. The LCVD process of SiC deposition was characterized by performing a kinetic study of SiC deposition. The deposits were characterized by the means of polishing, chemical etching, and SEM technique. A coupled thermal and structural model was created to calculate the thermal residual stress present in the deposits during the deposition process and during the cooling process. Laser heating of LCVD system was studied by developing another model. The transient temperature distribution within the fiber and substrate was obtained. The theoretical relationships between the laser power and the fiber heights for maintaining constant deposition temperatures were achieved.
|
612 |
The impact of an alternative approach to teaching in thermodynamics II using spreadsheets - a case study.Thurbon, Graham Arthur. January 2011 (has links)
Since South Africa’s newly formed democratically elected Government in 1994 the face of South African education has changed across the board involving a paradigm shift from a content-based teacher-centred curriculum to outcomes based education (OBE), a learner-centred outcomes-based curriculum. This means that educators need to re-align their courses to that system and allocate appropriate resources to it. Hence the way one needs to go about educating learners has changed, and conversely, the learners themselves have had to face a change in learning tactics associated with the system.
In light of the above, this study was undertaken to test an alternative method of teaching and learning. The subject chosen was a second semester introductory subject, Thermodynamics II, having several follow-on courses at higher levels. It is a subject that for many years has been considered internationally to be a “difficult” subject by many who have been through the system and one that in later life still tends to attract the same response. The study was conducted at the Durban Institute of Technology (DIT), formed from the merger of two former Technikons, Technikon Natal and ML Sultan, in 2002, now the Durban University of Technology (DUT), since 2007. The class was a fairly representative mix of race groups and gender.
The study was a single case study, operating both within the positivist paradigm, the typical paradigm of scientific study, and the interpretivist paradigm, one in which students are often more involved in constructing meaning for themselves. The study was run over an eight week period, roughly the first term of a semester, covering the first few sections of the syllabus. The approach chosen was to halve the number of conventional chalk and talk lectures over that period, and using a constructivist approach to learning, to replace them by interactive computer laboratory sessions whereby students learnt the theory for themselves whilst at the same time using it to generate spreadsheet exercises to solve typical Thermodynamics problems. The idea was that students actually interacting with the basic requirements of the subject would hopefully develop a deeper level of understanding for the subject. The second term of the subject was handled in the typical manner of conventional lectures.
There were three main interventions undertaken during the study period, namely two spreadsheet assignments undertaken using Excel, a student study habit survey and a concept test. Towards the end of the semester nine students from the class were interviewed. Each intervention is explained below.
For the two spreadsheet assignments, a constructivist approach was taken with students working in groups of three to design the spreadsheets, the first to solve for the work done for any three consecutive processes forming a cycle, drawing the cycle on a pressure-volume graph. The second spreadsheet assignment was to be able to solve any problem associated with the non-flow energy equation and the steady flow energy equation, for any one unknown. At the end of each assignment each group had to peer assess one other group’s spreadsheet by using it to solve a problem. They then had to assess it guided by a rubric, considering criteria taken from the subject’s learning outcomes, writing down any good points and points for improvement.
The study habit survey was a single page, two sided survey questionnaire, answered mostly using Lickert type scales and was handed out during one of the computer sessions. There were six main sections, namely personal information, information exchange, library use, subject specifics, practical experience/exposure and study techniques. A section was left at the end for students to fill any other information they wished to add. SPSS was used to analyse the information using cross tabs.
The concept test was designed by the Researcher in Quattro Pro and was a multiple choice type questionnaire. It automatically marked the test by adding up the correct answers, giving the student immediate feedback at the end of the test by providing a percentage score for each of the four questions asked and a percentage score for the test as a whole. The test questions were based on the principles and methods that students would have used in the setting up of the computer spreadsheet exercises.
The interviews were conducted individually for each student using a semi-structured approach. They were then transcribed and analysed using Transana. The information gathered from these, combined with information from the other interventions were triangulated where appropriate.
Further, the two main intervention semester test scores were compared to each other using SPSS. Previous semester test scores were used as a control group and were also compared to the intervention semester test scores. Although the marks attained in the intervention semester did not show any major improvement when compared with other semesters, it did show that alternative methods of teaching and learning can be implemented within the mark norms. The study habits survey provided information about student preferences which will be helpful in future attempts at improving teaching and learning in this branch of engineering in this institution. / Theses (M.Ed.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
|
613 |
MIXED SURFACTANT SYSTEMS: THERMODYNAMICS AND APPLICATIONS IN METAL OXIDE IMPRINTINGJoshi, Suvid 01 January 2014 (has links)
In this work we study mixtures of cationic surfactant (CTAB) and sugar based surfactant(s) (octyl beta-D-glucopyranoside (C8G1), dodecyl maltoside (C12G2) and octyl beta-D-xylopyranoside (C8X1)) to understand the non-ideal thermodynamic behavior of the mixtures of cationic and non-ionic surfactants in water and synthesis of imprinted materials. The thermodynamics of micellization, mixing and dilution of these systems are studied using Isothermal Titration Calorimetry (ITC) and the experimental data obtained are modeled with a pseudo-phase separation model with non-ideal mixing described by regular solution theory. It is shown that a model accounting for enthalpy of demicellization and enthalpy of dilution based on McMillan-Mayer model is able to fit ITC data set for CTAB-C8G1 system with varying mole fractions.
In addition to measuring non-ideal mixing behavior, mixtures of cationic and saccharide-based surfactants are of interest for the molecular imprinting of oxide materials. Mixtures of CTAB and either C8G1 or C8X1 are utilized to prepare nonporous adsorbent materials which act as selective adsorbents towards the headgroup of the saccharide surfactant. The approach is based on the Stöber silica particle synthesis process in which surfactants are added to soft particles present at the onset of turbidity to imprint their surface. This approach is shown to yield particles displaying selective adsorption for sugars with different number of carbons, but also provide enantioselective adsorption of targeted saccharides. Enantioselectivity of D-glucose, D-xylose and D-maltose is demonstrated by imprinting with C8G1, C8X1 and C12G2, respectively. The imprinting technique provides the first example of selective adsorption based on non-covalent imprinting of silica for sugars.
The mixed surfactant are also used to synthesize templated porous materials incorporating titanium which are used for epoxidation catalysis. The porous materials obtained have high surface area, uniform pore sizes in the mesopore range, and provided high selectivity and activity towards epoxidation of styrene. Titanosilicate thin films are also synthesized using cationic and saccharide surfactant mixtures to understand the incorporation of the titanium into the porous material. It is demonstrated that large amounts of isolated, tetracoordinated titanium sites can be incorporated into mesoporous silica-based materials via the complexation of the titanium precursor with a saccharide-based surfactant.
|
614 |
Foundations of Stochastic Thermodynamics / Entropy, Dissipation and Information in Models of Small SystemsAltaner, Bernhard 31 July 2014 (has links)
No description available.
|
615 |
Fluctuation theorem for quantum electron transport in mesoscopic circuits / Théorème de fluctuation pour le transport d'électrons quantique dans les circuits mésoscopiquesBulnes Cuetara, Gregory 13 September 2013 (has links)
Dans cette thèse nous étudions les propriétés statistique des courants dans des systèmes à l'échelle mésoscopique. Nous utilisons le formalisme de la statistique de comptage afin de caractériser les fluctuations de courant importantes à cette échelle. Celle-ci est obtenue en partant du Hamiltonien microscopique décrivant la dynamique des électrons sur le circuit considéré dans le régime quantique.<p>Nous considérons deux modèles particuliers de circuits à deux canaux, chacun comportant deux électrodes. Le premier modèle étudié est constitué de deux plots quantiques en couplage capacitif, et chacun échangeant des électrons avec deux électrodes. Le deuxième modèle est quant à lui constitué d'un double plot quantique connecté à deux électrodes et modulant le courant dans un point quantique formé lui-même par la jonction de deux électrodes. Pour ces deux modèles, chaque canal est soumis à une différence de potentiel, ou force thermodynamique, générant des courants stationnaires fluctuants.<p>La statistique des courants pour ces deux modèles est obtenue en utilisant une équation maîtresse pour les probabilités d'occupation dans les plots quantiques et le nombre d'électrons transférés entre ceux-ci et les électrodes. Nous vérifions que la distribution de probabilité jointes des courants dans chaque canal ainsi obtenue vérifie un théorème de fluctuation dans la limite des temps long faisant intervenir les forces thermodynamique des deux canaux.<p>La question de l'émergence d'un théorème de fluctuation effectif pour la distribution de probabilité marginale du courant dans un des deux canaux est également investiguée. Nous montrons que dans la limite ou le rapport des courants est grande, un tel théorème de fluctuation effectif est satisfait individuellement pour le canal de plus faible courant comme observé expérimentalement. Ce théorème fait intervenir une affinité effective dépendante des forces thermodynamiques des deux canaux et des spécificités du modèle considéré. Son étude détaillée est faite pour les deux modèles mentionnés.<p>Par ailleurs, nous posons également la question de l'existence d'un théorème de fluctuation pour des temps de mesure finis. Nous montrons qu'en présence d'un théorème de fluctuation dans la limite de temps longs, un critère peut être énoncé sur la condition initiale des plots quantiques menant à un théorème de fluctuations à temps fini. Ce critère est également étendu au cas des théorèmes de fluctuations effectifs.<p>Finalement, nous faisons une étude thermodynamique du modèle composé d'un double plot quantique en présence de différences de potentiel électrique et de température entre les électrodes du circuit. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
616 |
Experimental investigation of the diffusive properties of ternary liquid systemsGaland, Quentin 28 September 2012 (has links)
A fundamental step in the further developments of comprehensive modelling of the diffusive processes in liquids requires the possibility of obtaining reliable and accurate experimental data of the diffusion and thermodiffusion coefficients of multicomponent liquid systems. In the present work, we perform an experimental investigation of the diffusive properties of binary and ternary liquid systems. Two experimental techniques, the ‘Open Ended Capillary’ technique and the ‘Transient Interferometric Technique’ have been developed. Those techniques have been used for the experimental characterization of several systems composed of 1,2, 3,4-Tetrahydrnaphtalene, Isobutylbenzene and Dodecane at ambient temperature. Those particular species were selected as a simplified multicomponent system modelling the fluids contained in natural crude oils reservoirs. <p>For each of these techniques, experimental set-ups were designed, implemented and calibrated. The procedures for identifying the ternary diffusion coefficients from the measured compositions fields were studied in details. <p>The Open Ended Capillary Technique was applied under gravity condition to study isothermal diffusion binary and ternary systems. Difficulties related to a new procedure for interpreting the data collected at short times of the experiments are highlighted and its implication in the generalization of the technique for the study of multicomponent systems is discussed.<p>The Transient Interferometric Technique was used to perform an experimental study of three binary systems under gravity conditions. It was also applied for the investigation of ternary systems under microgravity condition in the frame of the DSC on SODI experiment, which took place aboard the International Space Station in 2011. The experimental results are reported and the analysis of the accuracy of the technique is presented. The TIT is the first technique ever providing accurate experimental measurements of the complete set of diffusion and thermodiffusion coefficients for ternary liquid systems.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
617 |
On Metal Speciation and Bioavailability in the Biosphere via Estimation of Metal-Ligand Thermodynamic PropertiesJanuary 2019 (has links)
abstract: Due to analytical limitations, thermodynamic modeling is a lucrative alternative for obtaining metal speciation in chemically complex systems like life. However, such modeling is limited by the lack of equilibrium constant data for metal-complexation reactions, particularly for metal-organic species. These problems were ameliorated estimating these properties from 0-125°C for ~18,000 metal complexes of small molecules, proteins and peptides.
The estimates of metal-ligand equilibrium constants at 25°C and 1 bar were made using multiple linear free energy relationships in accordance with the metal-coordinating properties of ligands such as denticity, identity of electron donor group, inductive effects and steric hindrance. Analogous relationships were made to estimated metal-ligand complexation entropy that facilitated calculation of equilibrium constants up to 125°C using the van’t Hoff equation. These estimates were made for over 250 ligands that include carboxylic acids, phenols, inorganic acids, amino acids, peptides and proteins.
The stability constants mentioned above were used to obtain metal speciation in several microbial growth media including past bioavailability studies and compositions listed on the DSMZ website. Speciation calculations were also carried out for several metals in blood plasma and cerebrospinal fluid that include metals present at over micromolar abundance (sodium, potassium, calcium, magnesium, iron, copper and zinc) and metals of therapeutic or toxic potential (like gallium, rhodium and bismuth). Metal speciation was found to be considerably dependent on pH and chelator concentration that can help in the selection of appropriate ligands for gallium & rhodium based anticancer drugs and zinc-based antidiabetics. It was found that methanobactin can considerably alter copper speciation and is therefore a suitable agent for the treatment of Wilson Disease. Additionally, bismuth neurotoxicity was attributed to the low transferrin concentration in cerebrospinal fluid and the predominance of aqueous bismuth trihydroxide. These results demonstrate that metal speciation calculations using thermodynamic modeling can be extremely useful for understanding metal bioavailability in microbes and human bodily fluids. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2019
|
618 |
Determination of transport properties of fluids by optical methodsKöhler, Werner, Giraudet, Cédric 30 January 2020 (has links)
In this workshop we will discuss some fundamentals of equilibrium and non-equilibrium
thermodynamics, in particular how concentration gradients are formed due to the Soret effect. At first
we will pay attention to the analysis of fluctuations at macroscopic thermodynamic equilibrium for the
determination of the Fick diffusion coefficient and the thermal diffusivity. Then, starting with the
extended diffusion equation, we will derive solutions for the concentration field under common
experimental geometries and introduce modern optical techniques for the measurement of the Fick
diffusion, thermodiffusion and Soret coefficients.
|
619 |
Predicting Phase Equilibria Using COSMO-Based Thermodynamic Models and the VT-2004 Sigma-ProfileOldland, Richard Justin 07 December 2004 (has links)
Solvation-thermodynamics models based on computational quantum mechanics, such as the conductor-like screening model (COSMO), provide a good alternative to traditional group-contribution methods for predicting thermodynamic phase behavior. Two COSMO-based thermodynamic models are COSMO-RS (real solvents) and COSMO-SAC (segment activity coefficient). The main molecule-specific input for these models is the sigma profile, or the probability distribution of a molecular surface segment having a specific charge density. Generating the sigma profiles represents the most time-consuming and computationally expensive aspect of using COSMO-based methods. A growing number of scientists and engineers are interested in the COSMO-based thermodynamic models, but are intimidated by the complexity of generating the sigma profiles. This thesis presents the first free, open-literature database of 1,513 self-consistent sigma profiles, together with two validation examples. The offer of these profiles will enable interested scientists and engineers to use the quantum-mechanics-based, COSMO methods without having to do quantum mechanics. This thesis summarizes the application experiences reported up to October 2004 to guide the use of the COSMO-based methods. Finally, this thesis also provides a FORTRAN program and a procedure to generate additional sigma profiles consistent with those presented here, as well as a FORTRAN program to generate binary phase-equilibrium predictions using the COSMO-SAC model. / Master of Science
|
620 |
Modeling the Non-equilibrium Phenomenon of Diffusion in Closed and Open Systems at an Atomistic Level Using Steepest-Entropy-Ascent Quantum ThermodynamicsYounis, Aimen M. 03 August 2015 (has links)
Intrinsic quantum Thermodynamics (IQT) is a theory that unifies thermodynamics and quantum mechanics into a single theory. Its mathematical framework, steepest-entropy-ascent quantum thermodynamics (SEAQT), can be used to model and describe the non-equilibrium phenomenon of diffusion based on the principle of steepest-entropy ascent. The research presented in this dissertation demonstrates the capability of this framework to model and describe diffusion at atomistic levels and is used here to develop a non-equilibrium-based model for an isolated system in which He3 diffuses in He4. The model developed is able to predict the non-equilibrium and equilibrium characteristics of diffusion as well as capture the differences in behavior of fermions (He3) and bosons (He4). The SEAQT framework is also used to develop the transient and steady-state model for an open system in which oxygen diffuses through a tin anode. The two forms of the SEAQT equation of motion are used. The first, which only involves a dissipation term, is applied to the state evolution of the isolated system as its state relaxes from some initial non-equilibrium state to stable equilibrium. The second form, the so-called extended SEAQT equation of motion, is applied to the transient state evolution of an open system undergoing a dissipative process as well mass-interactions with two mass reservoirs. In this case, the state of the system relaxes from some initial transient state to steady state. Model predictions show that the non-equilibrium thermodynamic path that the isolated system takes significantly alters the diffusion data from that of the equilibrium-based models for isolated atomistic-level systems found in literature. Nonetheless, the SEAQT equilibrium predications for He3 and He4 capture the same trends as those found in the literature providing a point of validation for the SEAQT framework. As to the SEAQT results for the open system, there is no data in the literature with which to compare since the results presented here are completely original to this work. / Ph. D.
|
Page generated in 0.0611 seconds