• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 752
  • 238
  • 139
  • 85
  • 26
  • 26
  • 26
  • 26
  • 26
  • 25
  • 19
  • 10
  • 8
  • 8
  • 8
  • Tagged with
  • 1796
  • 215
  • 189
  • 176
  • 159
  • 142
  • 135
  • 126
  • 117
  • 115
  • 113
  • 108
  • 104
  • 103
  • 103
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
821

The role of air-sea interactions in the intensity change of sheared tropical cyclones utilizing a dataset of co-located aircraft expendable bathythermograph and dropsonde soundings

Henkel, Benjamin J. 10 May 2024 (has links) (PDF)
Wind shear negatively impacts tropical cyclone (TC) intensity by disrupting the TC vortex and introducing lower equivalent potential temperature (θe) air, weakening the core. However, the ocean, a source of heat, aids in replenishing low θe boundary layer air, mitigating shear-induced ventilation effects. Favorable oceanic conditions, like higher sea-surface temperatures (SST), prevail in storm-relative motion quadrants not yet influenced by the TC. The interaction between storm-relative (e.g., SST) and shear-relative (e.g., ventilation) frameworks remains unclear. I propose an optimal overlap of shear-relative and motion-relative storm quadrants, where shear-induced weakening is minimized due to enhanced boundary layer recovery in a favorable ocean environment. This study presents a novel dataset comprising of co-located aircraft expendable bathythermographs (AXBT) and dropsondes from TROPIC and TC-DROPS datasets. Statistical analyses reveal air-sea correlations that cause up-shear and front-storm quadrant overlaps to be most beneficial to TC health, with investigation into the physical mechanisms driving these relationships.
822

Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions

Prellberg, Thomas 14 October 2005 (has links)
We develop the thermodynamic formalism for a large class of maps of the interval with indifferent fixed points. For such systems the formalism yields one-dimensional systems with many-body infinite range interactions for which the thermodynamics is well defined while the Gibbs states are not. (Piecewise linear systems of this kind yield the soluble, in a sense, Fisher models.) We prove that such systems exhibit phase transitions, the order of which depends on the behavior at the indifferent fixed points. We obtain the critical exponent describing the singularity of the pressure and analyse the decay of correlations of the equilibrium states at all temperatures. Our technique relies on establishing and exploiting a relationship between the transfer operators of the original map and its suitable (expanding) induced version. The technique allows one to also obtain a version of the Bowen-Ruelle formula for the Hausdorff dimension of repellers for maps with indifferent fixed points, and to generalize Fisher results to some non-soluble models. / Ph. D.
823

Water mass transformation through the lens of numerical models and observations

Bailey, Shanice Tseng January 2024 (has links)
The framework of this dissertation work relies heavily on the water mass transformation theory (WMT). The theory conceptualizes the explicit relationship between mechanical and thermodynamic processes on water masses, and subsequently, on ocean circulation due to surface fluxes, advective transport, and diffusive mixing. Through high-resolution model and reanalyses data, computation of WMT budgets were made possible to study the physical drivers of water mass variability using ocean and climate models. More specifically, I have applied WMT to study: 1) the interannual variability of Weddell-Sea-derived Antarctic Bottom Water; 2) the transformation of North Atlantic Subtropical Mode Water due to eddy-induced lateral mixing in the near surface; and 3) the physical drivers behind the latest marine heatwave (MHW) that occurred in the Gulf of Mexico in summer 2023. The study in Chapter 1 investigates the variability of WMT within the Weddell Gyre (WG). The WG serves as a pivotal site for the meridional overturning circulation (MOC) and ocean ventilation because it is the primary origin of the largest volume of water mass in the global ocean, Antarctic Bottom Water (AABW). Recent mooring data suggest substantial seasonal and interannual variability of AABW properties exiting the WG, and studies have linked the variability to the large-scale climate forcings affecting wind stress in the WG region. However, the specific thermodynamic mechanisms that link variability in surface forcings to variability in water mass transformations and AABW export remain unclear. This study explores how current state of the art data-assimilating ocean reanalyses can help fill the gaps in our understanding of the thermodynamic drivers of AABW variability in the WG via WMT volume budgets derived from Walin’s classic WMT framework. The three ocean reanalyses used are: Estimating the Circulation and Climate of the Ocean state estimate (ECCOv4), Southern Ocean State Estimate (SOSE) and Simple Ocean Data Assimilation (SODA). From the model outputs, we diagnose a closed form of the water mass budget for AABW that explicitly accounts for transport across the WG boundary, surface forcing, interior mixing, and numerical mixing. We examine the annual mean climatology of the WMT budget terms, the seasonal climatology, and finally the interannual variability. Our finding suggests that the relatively coarse resolution of these models did not realistically capture AABW formation, export and variability. In ECCO and SOSE, we see strong interannual variability in AABW volume budget. In SOSE, we find an accelerating loss of AABW during 2005-2010, driven largely by interior mixing and changes in surface salt fluxes. ECCO shows a similar trend during a 4-yr time period starting in late 2007, but also reveals such trends to be part of interannual variability over a much longer time period. Overall, ECCO provides the most useful timeseries for understanding the processes and mechanisms that drive WMT and export variability in the WG. SODA, in contrast, displays unphysically large variability in AABW volume, which we attribute to its data assimilation scheme. We also examine correlations between the WMT budgets and large-scale climate indices, including ENSO and SAM, and find no strong relationships. The goal of Chapter 2 was to gain novel insight to the mechanisms and thermodynamics of North Atlantic Subtropical Mode Water (NASTMW) creation, destruction and transformation in the North Atlantic through the lens of two high-resolution ocean models. This mode water is found throughout the northwestern part of the subtropical gyre, and its formation area is south of the Gulf Stream Extension. Though studies have looked at the variability of NASTMW, the mechanisms for their variations have not been fully explored. Thanks to the eddy-resolving nature of the two datasets from CESM and CM2.6 control runs, and the water mass transformation framework, we were able to quantify the contributions of NASTMW transformations due to surface eddies in the mixed layer of the North Atlantic. Using these models, we confirm previous findings that air-sea fluxes are the main cause of the formation and destruction of surface water masses over the whole basin. We find that in both models, the haline component of lateral mixing at the surface in the Gulf Stream region is a driver of mode water transformation. Chapter 3 aims to understand the mechanisms of the activation and evolution of the marine heatwave (MHW) that occurred in the Gulf of Mexico (GOM) during summer 2023. We quantified contributions of the thermodynamic processes that transformed surface waters in the GOM into an unprecedented large volume of extremely warm water (> 31.8). Through water mass transforma- tion analysis of reanalyses data, we find that the genesis of this MHW was due to the compounding effect of anomalously warm winter surface water priming the region for a MHW, coupled with greater exposure to strong solar radiation. Transformation due to total surface fluxes (sensible and latent heat, solar and longwave radiation) contributed to the MHW volume at a peak rate of 17.7 Sv (106 m3 s−1 = Sv), while mixing countered the effect by 14.6 Sv at its peak. Total transformation during this 2023 MHW peaked at 4.9 Sv.
824

Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration

Tang, Xu 10 January 2017 (has links)
In order to exploit unconventional gas and estimate carbon dioxide storage potential in shale formations and coal seams, two key questions need to be initially answered: 1) What is the total gas-in-place (GIP) in the subsurface reservoirs? 2) What is the exact ratio between bulk gas content and adsorbed gas content? Both questions require precise estimation of adsorbed phase capacity of gases (methane and carbon dioxide) and their adsorption behavior in shale and coal. This dissertation therefore analyzes adsorption isotherms, thermodynamics, and kinetics properties of methane and carbon dioxide in shale and coal based on experimental results to provide preliminary answers to both questions. It was found that the dual-site Langmuir model can describe both methane and carbon dioxide adsorption isotherms in shale and coal under high pressure and high temperature conditions (up to 27 MPa and 355.15K). This allows for accurate estimation of the true methane and carbon dioxide GIP content and the relative quantity of adsorbed phases of gases at in situ temperatures and pressures representative of deep shale formations and coal seams. The concept of a deep shale gas reservoir is then proposed to optimize shale gas development methodology based on the successful application of the model for methane adsorption in shale. Based on the dual-site Langmuir model, the isosteric heat of adsorption is calculated analytically by considering both the real gas behavior and the adsorbed phase under high pressure, both of which are ignored in the classic Clausius–Clapeyron approximation. It was also found that the isosteric heat of adsorption in Henry's pressure region is independent of temperature and can serve as a quantified index to evaluate the methane adsorption affinity on coal. In order to understand the dynamic response of gas adsorption in coal for carbon sequestration, both gas adsorption kinetics and pore structure of coal are investigated. The pseudo-second order model is applied to simulate the adsorption kinetics of carbon dioxide in coals under different pressures. Coal particle size effects on pore characterization of coal and carbon dioxide and nitrogen ad/desorption behavior in coal was also investigated. / Ph. D. / Shale gas is natural gas that is found trapped within subsurface shale formations, and the in-situ pressure and temperature of shale formations can go up to 27MPa and 86℃. Shale gas, the main component of which is methane, mainly consists of adsorbed phase and free compressed gas in shale formations. The adsorbed phase accounts for 20-85% of the total gas-in-place resource. Thus, the estimation of amount of methane adsorbed in shale under in-situ conditions are extremely important for determining the total gas-in-place quantity and the working life of a shale gas production well and its economic viability. This work provides a method for accurate estimation of the shale gas-in-place resource under in-situ shale formation conditions. The method is based on laboratory methane adsorption test data in shale at high pressure (up to 27MPa) and high temperature (up to 82℃) conditions. According to this method, it was found that for depths greater than 1000 m (> 15 MPa) in the subsurface, the shale gas resources have historically been significantly overestimated. For Longmaxi shale (2500 – 3000 m in depth), classical approaches overestimate the GIP by up to 35%. The ratio of the adsorbed phase compared to the free gas has been significantly underestimated. Shale gas production follows pressure depletion of shale formations. The pressure depletion process allows methane in the adsorbed phase to become free gas, which is known as the physical desorption process. Desorption is an endothermic process while adsorption is an exothermic process, both of them are reversible. Thus, the heat transfer process during shale gas production requires a thermodynamic analysis of methane adsorption in shale. This work investigates the isosteric heat of adsorption for methane in shale by considering both the real gas behavior and the volume effect of the adsorbed phase, not previously considered for methane in shale. The temperature dependence as well as the uptake dependence of the isosteric heat can be readily investigated by the applied method. This study lays the foundation for future investigations of the thermodynamics and heat transfer characteristics of the interaction between high pressure methane and shale. This work also investigates gas adsorption kinetics properties in coal and the particle size effect on pore characterization of coal using the gas adsorption approach. Results show that particle size of coal samples can significantly influence the sorption behavior of gas in coal, which finally affects pore characterization of coal. It is difficult to characterize the pore structure of coal using only one coal particle size. Carbon dioxide adsorption kinetics in coal, which can be modelled by the pseudo-second order model, is a combination of both bulk diffusion-controlled and surface interaction-controlled processes; the former dominates the initial stage while the latter controls the majority of the overall process.
825

Scope and limitations of the irreversible thermodynamics and the solution diffusion models for the separation of binary and multi-component systems in reverse osmosis process

Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 05 February 2017 (has links)
Yes / Reverse osmosis process is used in many industrial applications ranging from solute-solvent to solvent-solvent and gaseous separation. A number of theoretical models have been developed to describe the separation and fluxes of solvent and solute in such processes. This paper looks into the scope and limitations of two main models (the irreversible thermodynamics and the solution diffusion models) used in the past by several researchers for solute-solvent feed separation. Despite the investigation of other complex models, the simple concepts of these models accelerate the feasibility of the implementation of reverse osmosis for different types of systems and variety of industries. Briefly, an extensive review of these mathematical models is conducted by collecting more than 70 examples from literature in this study. In addition, this review has covered the improvement of such models to make them compatible with multi-component systems with consideration of concentration polarization and solvent-solute-membrane interaction.
826

Thermodynamic approach to biogas production

Muvhiiwa, Ralph Farai 02 1900 (has links)
This dissertation determines theoretical targets for producing biogas. Calculations were based on the relationship between the mass of substrate used (assumed to be glucose) versus the amount and composition of gas produced. Methane, hydrogen and carbon dioxide were considered as gases produced by biogas processes. The calculations undertaken to determine the production rates and environmental targets of the biogas production system were based on mass and energy balances as well as the second law of thermodynamics. These were applied to determine the limits of performance of the process. These limits are important due to the fact that they cannot be exceeded even if we genetically engineer organisms or change the equipment design or operation. Combining the results enabled us to plot an attainable region that showed the achievable composition of the gas as well as the minimum work and energy requirements for biogas production. It shows that the process is hydrogen and enthalpy (heat) limited. Furthermore the results show that a maximum of 3 moles of methane per mole of glucose are produced sustainably which in turn produces a large heat load of 142 kJ/mol of glucose. / Physics / M. Sc. (Physics)
827

Theoretical and Experimental Studies of the Gas-Liquid Interface

Packwood, Daniel Miles January 2010 (has links)
A theoretical model describing the motion of a small, fast rare gas atom as it passes over a liquid surface is developed and discussed in detail. A key feature of the model is its reliance on coarse-grained capillary wave and local mode descriptions of the liquid surface. Mathematically, the model is constructed with several concepts from probability and stochastic analysis. The model makes predictions that are quantitative agreement with neon-liquid surface scattering data collected by other research groups. These predictions include the dominance of single, rather than multiple, neon-liquid surface collision dynamics, an average of 60 % energy transfer from a neon atom upon colliding with a non-metallic surface, and an average of 25 % energy transfer upon colliding with a metallic surface. In addition to this work, two other investigations into the gas-liquid interface are discussed. The results of an experimental investigation into the thermodynamics of a gas flux through an aqueous surface are presented, and it is shown that a nitrous oxide flux is mostly due to the presence of a temperature gradient in the gas-liquid interface. Evidence for a reaction between a carbon dioxide flux and an ammonia monolayer on an aqueous surface to produce ammonium carbamate is also found. The second of these is an investigation into the mechanism of bromine production from deliquesced sodium bromide aerosol in the presence of ozone, and involves a sensitivity and uncertainty analysis of the computer aerosol kinetics model MAGIC. It is shown that under dark, non-photolytic conditions, bromine production can be accounted for almost exclusively by a reaction between gas-phase ozone and surface-bound bromide ions. Under photolytic conditions, bromine production instead involves a complicated interplay between various gas-phase and aqueous-phase reactions.
828

Thermomechanical behaviour of NiTi

Tan, Geraldine January 2005 (has links)
[Truncated abstract] The study of NiTi shape memory alloys, although comprehensive and diverse, still encounters numerous uncertainties and misunderstandings that often jeopardise the effective use of these alloys in various applications. One such key area is the understanding of the micromechanics and thermodynamics of the deformation mechanisms, such that their deformation behaviour can be accurately predicted and modelled. Furthermore, most research involves polycrystalline NiTi of varying compositions and processing history, both of which complicate and damage the internal structure of the matrix even before deformation. This work aims to study the micromechanisms of deformation of near-equiatomic NiTi alloys, both in polycrystalline and single crystal forms, with particular attention given to the commonly observed phenomena of Luders-like deformation behaviour and deformation induced martensite stabilisation. This work was carried out in three sections. Firstly, the tensile deformation of polycrystalline NiTi samples via martensite reorientation and stress-induced martensitic transformations was carried out. The samples were deformed to various stages of deformation and then thermally cycled to study the thermomechanical response to deformation as a means to explore the various mechanisms of deformation. Next, the deformation and post-deformation transformation behaviour of NiTi single crystals were studied to verify the effect of grain boundaries and other hypotheses raised regarding the deformation mechanisms. The single crystal samples were deformed along three low-index axial orientations. Finally, microscopic analysis was carried out on as-annealed and the deformed polycrystal and single crystal samples by means of transmission electron microscopy. The microstructural analyses accompanied the thermodynamic study and provided evidences to support various hypotheses
829

Contribuição do trabalho mecânico nas equações de balanço em procedimentos de otimização. / Contribution of the mechanical work in the balance equations in optimization procedures.

GOMES, Thassio Nóbrega. 23 March 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-03-23T01:58:52Z No. of bitstreams: 1 THASSIO NÓBREGA GOMES - TESE PPGEQ 2016..pdf: 2654061 bytes, checksum: ac0f5ea653fa24b05725f94f3e01236b (MD5) / Made available in DSpace on 2018-03-23T01:58:52Z (GMT). No. of bitstreams: 1 THASSIO NÓBREGA GOMES - TESE PPGEQ 2016..pdf: 2654061 bytes, checksum: ac0f5ea653fa24b05725f94f3e01236b (MD5) Previous issue date: 2016-08-30 / A influência do trabalho mecânico nos procedimentos de otimização via minimização da taxa de geração de entropia (EGM) de sistemas reativos e não reativos, tem sido objeto de análise nesta tese. As metodologias utilizadas na maioria dos trabalhos de otimização empregam, em sua estrutura, apenas balanços de massa e energia, desconsiderando a 2° Lei da termodinâmica a qual possui aplicações relevantes nos sistemas propostos. A metodologia usada consiste na utilização conjunta da 1° e 2° Lei da termodinâmica visando estabelecer as condições ótimas de operação do processo de produção do propileno glicol (sistema reativo) e da cristalização do ácido monocloroacético (sistema não reativo). Portanto, o principal objetivo consiste na determinação dos efeitos do sistema de agitação nos procedimentos de otimização por meio da EGM aplicada aos sistemas reativos e não reativos. Tais considerações têm sido possíveis através da análise dimensional, de acordo com o método de Rayleigh & Buckingham, que leva em conta os parâmetros físicos e geométricos e as variáveis chave do sistema. Considerando o sistema reativo observa-se um aumento significativo na taxa de conversão, de 36% (sistema de não-optimizado) a 95% (sistema optimizado) com uma consequente redução de subprodutos. Para o sistema de cristalização a inclusão do sistema de agitação permite observar um aumento da taxa de geração de entropia; tal comportamento pode produzir um impacto significante no sistema de refrigeração. Além disso, tem sido possível estabelecer a influência do trabalho do agitador no procedimento de otimização para os sistemas reativos e não reativos. Os resultados também indicam que com a utilização da análise entrópica como ferramenta de otimização, tem-se comprovado serem simples e fácil de aplicar visto que exigem baixo esforço computacional. / The integration of stirring systems in the calculation and optimization procedures has suffered a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems can play a pivotal role. Neglected these factors can lead to sub-optimal results as can be observed in the literature. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool can not yield expected results, hence the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this thesis is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive and non reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. Consider for the simulation purpose the production of propylene glicol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of byproducts. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure for the reactive and non reactive systems. The results also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.
830

Thermodynamic approach to biogas production

Muvhiiwa, Ralph Farai 02 1900 (has links)
This dissertation determines theoretical targets for producing biogas. Calculations were based on the relationship between the mass of substrate used (assumed to be glucose) versus the amount and composition of gas produced. Methane, hydrogen and carbon dioxide were considered as gases produced by biogas processes. The calculations undertaken to determine the production rates and environmental targets of the biogas production system were based on mass and energy balances as well as the second law of thermodynamics. These were applied to determine the limits of performance of the process. These limits are important due to the fact that they cannot be exceeded even if we genetically engineer organisms or change the equipment design or operation. Combining the results enabled us to plot an attainable region that showed the achievable composition of the gas as well as the minimum work and energy requirements for biogas production. It shows that the process is hydrogen and enthalpy (heat) limited. Furthermore the results show that a maximum of 3 moles of methane per mole of glucose are produced sustainably which in turn produces a large heat load of 142 kJ/mol of glucose. / Physics / M. Sc. (Physics)

Page generated in 0.128 seconds