Spelling suggestions: "subject:"thermographie infrarouge"" "subject:"thermographie unfrarouge""
21 |
Numerical modeling of pulse thermography experiments for defect characterisation purposesSusa, Mirela 16 April 2018 (has links)
La méthode des éléments finis est un outil mathématique puissant qui permet la résolution des équations différentielles décrivant un processus physique donné. Elle est particulièrement adaptée à la résolution de problèmes non linéaires ayant des géométries complexes. Une de ces applications est la modélisation du transfert de chaleur dans un objet soumis à une inspection par la technique de thermographie infrarouge pulsée (PT). Les résultats de ce travail ont prouvé que les solutions obtenues numériquement correspondent aux résultats expérimentaux, ceci malgré les contraintes liées à la puissance de l'ordinateur utilisé (capacité mémoire, disque, etc.) afin de résoudre le problème d'une manière adéquate. Par conséquent, le modèle numérique peut être considéré comme un outil complémentaire à la caractérisation des défauts par la PT. Dans le cas d'une procédure d'inspection où les différenst types de défauts présents dans le spécimen sont connus a priori, la modélisation numérique peut être utilisée efficacement afin d'améliorer la caractérisation de ces défauts, grâce à la combinaison modélisation MEF / expérience. En se basant sur l'analyse qualitative de l'évolution temporelle des profils de température obtenus en pratique, on a démotnré qu'il est possible de déterminer le type de défaut par une simple comparaison de la forme expérimentale de l'évolution du contraste qui est dépendante du type de défaut, avec les résultats obtenus grâce au modèle numérique. Une fois que le défaut est connu, en cas de structures complexes de type "sandwich", sa profondeur peut être réduite automatiquement puisque la plupart de ces défauts typiques apparaît sur les interfaces des couches de l'échantillon. Afin de procéder à la détermination de la taille du défaut, tâche qui est souvent très difficile en cas de structures multicouches à cause du contraste flou observé sur le défaut, provoqué par les effets latéraux de diffusion de chaleur, les expressions de régression obtenues à partir des résultats de modélisation peuvent être utilisées. Dans ce contexte, comme il a été démontré, la valeur du contraste thermique maximal obtenue expérimentalement n'est pas un paramètre fiable qui peut être utilisée avec confiance comme indicateur quantitatif des caractéristiques du défaut (dans ce cas-ci, sa taille latérale). Ceci est principalement dû au niveau élevé de l'incertitude sur le contraste maximal de température [delta]Tmax déterminé à partir de l'expérience, ainsi qu'à la force dépendance de [delta]Tmax à l'égard de la puissance de la source de chlauer appliquée. Ce problème devient signficatif dans le contexte de chauffage non-uniforme inévitablement présent dans les expériences de thermographie pulsée. En ce qui concerne l'incertitude des mesures, dans les cas où le signal thermique du défaut est faible, l'incertitude peut devenir égale ou même plus grande que la [delta]Tmax obtenu. Cependant, dans la plupart des cas, elle représente un pourcentage significatif du [delta]Tmax déterminé expérimentalement. D'autre part, les effets de l'excitation non-uniforme se sont avérés partiellement éliminés quand la procédure proposée pour la sélection de la région saine adéquate est utilisée. La procédure est basée sur l'utilisation de l'Image de Distribution de Source (IDS) reconstruite à partir de plusieurs thermogrammes initiaux acquis juste après que l'excitation soit appliquée à l'échantillon (alors que les effets possibles des défauts ne sont pas encore visibles sur la surface du spécimen). Une fois appliquée, la méthodologie s'assure que les régions défectueuses et saines aient reçu une quantité égale d'énergie (chaleur) durant l'excitation (jusqu'à une différence tolérable donnée). Cependant, aucune des corrections et mesures de précaution ne peuvent éliminer la nature fortement incertaine des valeurs expérimentales de [delta]Tmax. D'un autre côté, la période T max d'apparition de [delta]Tmax semble être beaucoup moins affectée par dse incertitudes de mesure et est relativement sensible aux caractéristiques du défaut (telles que sa taille et sa profondeur). On a démontré que même s'il existe des différences dans les valeurs absolues, les périodes de contraste maximal de température obtenues expérimentalement et numériquement peuvent être reliées par une simple relation algébrique, qui est réduite à une différence à une constante donnée. Une fois que ce rapport est établi, la régression obtenue par la modélisation peut être utilisée efficacement afin de fournir les informations désirées sur les caractéristiques inconnues du défaut. D'ailleurs, dans plusieurs cas où seulement un nombre limité de défauts est disponible dans l'échantillon calibré, pour que le procédé d'inversion soit établi, ou quand les données de mesure sont trop bruitées pour permettre la formulation d'une méthodologie d'inversion fiable, la modélisation numérique permet la déterminaison plus simple et plus directe des relations de régression pour de futures caractérisations de défauts. Par conséquent, le nombre illimité de simulations peu coûteuses pouvant être effectuées permet la création d'ensemble global et complet de relations entre les caractéristiques de défauts et les variables significatives de la PT, telle que la période d'apparition du contraste maximal de température.
|
22 |
Monitoring thermal variations in carbon capture by bruciteAksenova, Diana 31 August 2018 (has links)
L'augmentation rapide du niveau de concentration de dioxide de carbone dans l'air ambiant à la suite de diverses activités humaines est l'un des principaux défis environnementaux du XXIe siècle. Par conséquent, la résolution des problèmes d'émissions de carbone est l'une des principales tâches de la société moderne. Diverses technologies ont été développées et testées au cours des dernières décennies pour atténuer ce problème. La carbonatation minérale est reconnue comme l'une des technologies les plus sûres permettant de capturer et de stocker en permanence du carbone sous forme de carbonates thermiquement stables. La minéralisation passive du carbone par les résidus miniers en tant que processus naturel a lieu dans des conditions environnementales, partout où l'accès de l'air et de l'eau au tas de résidus miniers est possible. Le présent travail explore l'utilisation de la thermographie infrarouge comme méthode non destructive de surveillance du comportement exothermique au cours de la capture passive du carbone par la brucite. La configuration de carbonatation à deux cellules, consolidée avec une caméra infrarouge, a été conçue pour surveiller simultanément les variations thermiques de la surface du matériel dues à l'absorption de CO2 ainsi que le flux de chaleur échangé entre la brucite et son environnement. Les résultats montrent une influence significative de la température ambiante sur le système qui a contribué à l'échange thermique de la couche réactive avec l'environnement. La comparaison des profils de température entre les demi-cellules de référence et réactives montre des différences dans les variations thermiques par rapport à la température adiabatique à cause de l'influence de la température ambiante. L'élévation de température adiabatique par rapport aux profils de température de surface démontre une différence substantielle dans le taux de génération de chaleur de carbonatation en raison de l'échange de flux de chaleur avec l'environnement pendant le processus. / Rapid increment of the level of carbon concentration in ambient air in consequence of various human activities is one of the major environmental challenges of 21st century. Therefore, solving carbon emissions issues is one of the main tasks of the modern society. Variety of technologies have been developed and tested over the past decades to alleviate this concern. Mineral carbonation is recognized as one of the safest technologies that allows to capture and permanently store carbon in the form of thermally stable carbonates. Passive mineral carbonation by mining residues as a naturally occurring process takes place under environmental conditions anywhere where the air and water access to mining residue heap can be obtained. The present work explores the use of infrared thermography as a non-destructive method of monitoring exothermal behavior of passive carbon capture by brucite. Dual-cell carbonation setup consolidated with an infrared camera was designed in order to provide simultaneous monitoring of thermal variations on the surface of the material due to CO2 uptake as well as exchange of heat fluxes between brucite and its surroundings. The results show a significant influence of room temperature on the system that contributed to heat exchange of the reactive layer with the surrounding. The temperature profiles comparison between reference and reactive half-cells demonstrates striking differences in thermal variations than the adiabatic temperature due to the room temperature influence. Adiabatic temperature rise in comparison with surface temperature profiles demonstrates a substantial difference in carbonation heat generation rate due to heat fluxes exchange with surrounding during the process.
|
23 |
Comparaison expérimentale de la thermographie modulée et de la thermographie pulsée pour l'évaluation non destructive des matériaux employés en aérospatialBen Larbi, Wael 16 April 2018 (has links)
Ce mémoire a pour but de comparer deux méthodes de contrôle non destructif : la thermographie modulée et la thermographie puisée, l'étude a été faite sur différents échantillons utilisés dans la construction aéronautique et est présentée sous forme de comparaison quantitative et qualitative, avec une explication des avantages et des inconvénients de chaque méthode.
|
24 |
Potentiel de la robotique pour l'inspection thermographique par chauffage inductifMokhtari, Mohammed-Yacine 21 December 2018 (has links)
La thermographie par courants de Foucault (ECT) est une méthode de thermographie active. L’excitation inductive génère des courants de Foucault dans les spécimens conducteurs. En présence de défauts, la circulation des courants est affectée par ces discontinuités produisant un changement dans la distribution de la température autour des défauts. Ces changements sont observés avec une caméra infrarouge. Dans ce travail, on présente une application robotique de la thermographie par courants de Foucault. Une interface robotique a été développée et tous les capteurs utilisés ont été intégrés à la plateforme. Des simulations ont été achevées avec COMSOL Multiphysics en variant différents paramètres. Des expériences ont été menées sur plusieurs spécimens (de différents matériaux) avec des défauts de différents types et tailles. La linescan thermographie est principalement étudiée et d’autres modes d’inspections ont été explorés. Les images résultantes sont reconstruites avec un algorithme dédié. Finalement, les résultats de la méthode sont comparés à ceux de la thermographie optique (par halogène) pour montrer les capacités de la méthode. / Eddy current thermography (ECT) is an active thermography method. The inductive excitation generates Eddy currents in electrically-conductive specimen. In a presence of defects, the eddy current flow is affected by these discontinuities leading to changes in the temperature distribution in the specimen around the defects. These changes are observed by an infrared camera. In this work, we present a robotic application of the method. A robotic interface is developed and all the sensors needed are integrated to the platform. Simulations are performed using COMSOL Multiphysics by varying different parameters. Experiments are realised on different specimens (made of different materials) with defects of different sizes. The linescan Eddy current thermography is studied and other modes are explored. The resulting images are reconstructed with a dedicated algorithm. Finally, the method’s results are compared to optical thermography to show the capability of the method.
|
25 |
Cold food chain : infrared thermography applied to the evaluation of insulation anomalies in refrigerated vehicles for the transport of food & exploration of cold approach in infrared thermography for non-destructive testingLei, Lei 26 September 2018 (has links)
Le coût croissant de l’énergie a fait de l’économie d’énergie une nécessité vitale dans le monde actuel. Un des exemples consiste à “maintenir la chaîne du froid”, c’est-à-dire le transport correct des aliments périssables dans les véhicules réfrigérés, en particulier pour les produits laitiers, la viande et les aliments congelés. Tout en conservant une conservation appropriée des denrées alimentaires, l’ATP (Agreement on Transport of Perishable Foodstuffs) est l’un des accords concernant les essais d’isolation thermique qui déterminent l’adéquation du transport. Le test standard ATP est une procédure pour mesurer l’état isolant des équipements avec une approche globale. Néanmoins, certains défauts locaux dans la structure de l’équipement ne peuvent pas être visualisés dans cette procédure. Dans ce contexte, la technique de thermographie pourrait être particulièrement utile à ces problèmes. Deux exemples de cette application sont présentés dans cette thèse, l’un d’eux se concentre sur la cartographie du flux de chaleur sur la surface externe d’un rouleau-conteneur isolé par la technique de thermographie infrarouge. La seconde tente d’établir une vue panoramique du flux de chaleur sur la surface interne d’un véhicule isolé. Encouragé par les résultats favorables précédents, une exploration de l’approche à froid dans la thermographie infrarouge pour les Tests Non-Destructifs et l’Évaluation est introduite et réalisée dans ce qui suit. Une approche se concentre sur la détection des défauts isolés et des ponts thermiques dans les panneaux de caisses de camions isolés par chauffage à lampe et refroidissement par air, deux moyens d’excitation opposés. L’autre examine un refroidissement à l’azote liquide appliqué à un échantillon d’acier avec des trous à fond plat de différentes profondeurs et tailles. Différentes méthodes de traitement des données et de modélisation et de simulation sont effectuées dans des chapitres connexes. / The increasing cost of energy has made energy saving a vital necessity in the current world. One of the examples involves, “Maintaining the cold chain”, which is the correct transport of perishable foodstuffs in refrigerated vehicles, especially for dairy products, meat and frozen foods. In this respect a suitable thermal insulation implemented in refrigerated vehicles is essential for saving energy while maintaining an appropriate conservation of the foodstuffs. ATP (Agreement on Transport of Perishable Foodstuffs) is one of the agreements concerning thermal insulation tests ensuing the suitability of the transport. The ATP standard test is a procedure to measure the insulating status of equipment with a global approach. Nonetheless, some local defects in the structure of equipment cannot be visualized in this procedure. The thermography technique could be particularly helpful for these issues. Two examples of this application are presented in this thesis, one focuses on mapping the heat flux on the external surface of an insulated rollcontainer by infrared thermography technique. The second one attempts to establish a panoramic view of the heat flux on the internal surface of an insulated vehicle. Encouraged by previous favorable results, an exploration of the cold approach in infrared thermography for Non-Destructive Testing & Evaluation is introduced and performed herein. One approach focuses on the detection of insulated flaws and thermal bridges in insulated truck box panels by lamp heating and air cooling, two opposite means of excitation. The other approach investigates the application of liquid nitrogen cooling to a steel specimen with flat-bottom holes of different depths and sizes. Different data processing methods and modeling and simulation are also carried out.
|
26 |
Optimization of line scanning thermography of composite materials for aerospace industry using advanced modeling and analysis algorithmsKhodayar, Fariba 27 September 2018 (has links)
Ces dernières années, l'émergence de matériaux avancés et de méthodes de fabrication a conduit à la production de composants mécaniques qui fournissent de meilleures spécifications mécaniques avec un poids inférieur. Ces produits spéciaux sont utilisés dans les industries de haute technologie comme l'aérospatiale et l'armée. Par conséquent, la qualité du produit est essentielle pour obtenir un produit sécurisé. Les controles non destructifs (CND) sont l'une des méthodes les plus utilisées pour détecter les défauts internes de différents matériaux. Cette technique n'a pas d'effet négatif sur les spécimens. Les différentes techniques de tests non destructifs sont utilisées dans différents domaines pour assurer l'exactitude, vérifier l'intégrité, réduire les coûts de production et détecter les défauts. Diverses méthodes CND ont été introduites et développées pour détecter les défauts et les délaminages qui ont été utilisés en fonction de la taille et du type de défaut, du matériau et de la localisation des défauts. La thermographie par balayage linéaire (LST) est une technique de thermographie dynamique qui permet d'inspecter de grands composants de surfaces métalliques et de composites couramment utilisés dans l'industrie aérospatiale. En tant que technique de test et de controle non destructive (CND), la LST est une technique dynamique adaptée à l'inspection de composants aérospatiaux importants et complexes. La méthode LST robotisée présente des avantages par rapport aux approches statiques. La LST robotisé fournit une uniformité de chauffage et permet un traitement d'image qui améliore la probabilité de détection, permettant à un composant à grande échelle d'être inspecté sans perte de résolution. En utilisant l'approche LST, il est possible d'inspecter de grandes surfaces à des vitesses de balayage élevées. De plus, les résultats d'inspection sont immédiatement disponibles pour analyse pendant que le processus de numérisation se poursuit. / In the last decade, emerging of advanced materials and manufacturing methods leads to produce the mechanical components, which provide better mechanical specifications with lower weight. These special products are used in the high technology industries such as aerospace and military. Hence, the product quality is vital to achieve a secure product. Non-destructive Testing (NDT) is one of the popular methods, which is employed to detect the internal defects of different materials. This technique does not have any negative effect on the specimens. The various techniques of nondestructive testing are used in different fields to ensure accuracy, verify integrity, reduce production costs and detect defects. Various NDT methods were introduced and developed to detect the flaws and delamination which have been used according to defect size and type, material, and defect location. Line scan thermography (LST) is a dynamic thermography technique, which is used to inspect large components of metallic surfaces and composites, commonly used in the aerospace industry. As a nondestructive testing and evaluation (NDT&E) technique, LST is a dynamic technique suited to inspect large and complex aerospace components. The robotized LST method provides advantages in comparison to the static approaches. Robotized LST provides heating uniformity and allows image processing which enhances the detection probability, allowing a large-scale component to be inspected without the loss of resolution. Using the LST approach, it is possible to inspect large areas at high scan speeds. Also, the inspection results are immediately available for analysis while the scanning process continues. One of the important challenges in LST method is the number of parameters such as scanning speed, power, the distance between source and specimen, which affect the LST performance. The optimal values are dependent on the material structure, thermal specifications of the composite material, defect shape and infrared camera resolution. In order to determine the optimal parameters, the LST is simulated using a 3D finite element method (FEM). The main objective of this thesis is to maximize the detection depth and the signal-to-noise (SNR) value at maximum signal contrast as the criteria to evaluate the inspection quality and performance. A composition of the analytical model of LST thermography, 3D finite element approach and experimental data is employed to find the optimal LST parameters. The signal processing techniques that were initially developed to be applied on pulse thermography have been successfully implemented to enhance the detection probability.
|
27 |
Stimulation ultrasonore en thermographie infrarouge : intégration des appareillages et développement de procédures expérimentalesPiau, Jean-Marc 12 April 2018 (has links)
Ce mémoire présente l'intégration des appareillages et le développement de procédures expérimentales pour la réalisation d'inspection non destructive effectuée par vibrothermographie stimulée par ultrasons. Le laboratoire de vision et systèmes numériques (LVSN) de l'Université Laval s'est doté, en 2005, de deux sources ultrasonores destinées à l'étude et le développement d'une technique non destructive manquante au laboratoire. Cette technique s'appelle la vibrothermographie stimulée par ultrasons du fait que l'on utilise une caméra infrarouge pour cartographier thermiquement, sans contact, la surface d'un matériau stimulé mécaniquement par ondes mécaniques de fréquences ultrasoniques. Après avoir lu ce mémoire, le lecteur devrait être capable de réaliser une inspection non destructive efficace par vibrothermographie stimulée par ultrasons. Ce dispositif intégré au cours de ma maîtrise est maintenant opérationnel au sein du laboratoire pour des fins d'élargissement des techniques d'inspection non destructive de matériaux.
|
28 |
Calcul précis des déformations planes par la méthode de la grille. Application à l'étude d'un multicristal d'aluminiumBadulescu, Claudiu 08 January 2010 (has links) (PDF)
Ce travail porte sur l'amélioration de la méthode de la grille afin de mesurer avec de meilleures performances métrologiques des champs de déformation en surface d'éprouvettes soumises à des sollicitations mécaniques. Une procédure d'obtention directe des déformations à partir d'images de grilles a été proposée dans ce but. L'influence des défauts de la grille a également été caractérisée et une procédure adaptée a été développée pour l'éliminer. Les outils proposés ont été appliqués dans le cas de grilles unidirectionnelles et croisées. Les performances métrologiques ont été estimées avec des essais adaptés. Enfin, la méthode a été appliquée à un essai sur un multicristal d'aluminium, montrant ainsi sa mise en oeuvre dans un cas complexe de caractérisation de comportement de matériau
|
29 |
Analyse par thermographie infrarouge des effets dissipatifs de la localisation dans des aciersLouche, Hervé 19 January 1999 (has links) (PDF)
La compréhension et la modélisation des mécanismes de localisation observés lors de processus d'emboutissage représentent un enjeu industriel important. L'objectif de ce travail est d'étudier, par une approche expérimentale basée sur l'analyse des sources de chaleur, les manifestations de localisation pouvant se produire, sur des aciers, lors d'essais quasi-statiques de traction monotone.<br />A partir d'un traitement d'images thermiques infrarouge (effets) et de l'équation de diffusion de la chaleur, on propose une méthode permettant d'estimer les sources de chaleur (causes) générées par le processus de déformation.<br />Sur certains aciers doux, on met en évidence la propagation à vitesse uniforme d'une ou plusieurs bandes dissipatives étroites à travers la zone utile de l'éprouvette. Comparativement à ce premier mode (bandes de Lüders) où les effets dissipatifs sont soudains, intenses et très localisés, on met en évidence le caractère plus régulier et progressif de la concentration des zones où se développent les irréversibilités mécaniques menant à la striction localisée. Des "indicateurs de localisation énergétiques'' proposés pour détecter la localisation montrent qu'elle peut apparaître avant le maximum de la charge, dans plusieurs zones de l'éprouvette. Ce constat implique que la partie utile d'une éprouvette doit être considérée comme une structure et non comme un élément de volume réagissant de façon homogène, ce qui n'est pas sans conséquences sur les méthodes d'identification des modèles de comportement utilisés, en particulier, dans les approches théoriques de la localisation.<br />Enfin, d'autres expériences ont permis de mettre en évidence des manifestations énergétiques associées à des formes particulières de localisation : propagation de fronts de changement de phase (acier inoxydable A301), effets dissipatifs associés à des bandes de glissement (acier magnétique HiBiGO), effets dissipatifs localisés dans des bandes de cisaillement (polymère PVC).
|
30 |
Identification des Paramètres Caractéristiques d'un Phénomène Mécanique ou Thermique Régi par une Equation Différentielle ou aux Dérivées PartiellesAtchonouglo, Kossi 25 October 2007 (has links) (PDF)
Ce mémoire est consacré à la résolution des problèmes inverses. Il est divisé en deux parties, la première concerne les phénomènes mécaniques et la deuxième les phénomènes thermiques. Avant de proposer des algorithmes pour résoudre les problèmes inverses considérés, la résolution des problèmes directs est au préalable analysée en détail. Le premier thème développé dans la partie mécanique est l'identification des dix caractéristiques d'inertie d'un solide rigide. Les équations du mouvement sont formulées par une égalité entre matrices 4x4 antisymétriques, l'une associée au torseur dynamique, l'autre au torseur des efforts extérieurs. Les caractéristiques d'inertie sont regroupées en une matrice 4x4 symétrique défini-positive. Cette matrice intervient linéairement dans les équations du mouvement, la prise en compte de sa positivité est essentielle à la convergence de l'algorithme du type gradient conjugué projeté proposé pour l'identifier. Le deuxième thème abordé est l'identification du moment quadratique de la section droite d'une poutre en flexion. La partie thermique concerne l'identification de la conductivité thermique et de la chaleur volumique d'un solide dans le cas d'une propagation unidimensionnelle de la chaleur. La méthodologie développée est la suivante : Construction d'un algorithme A1 de résolution du problème direct, Construction d'un algorithme A2 de résolution du problème inverse, Validation de l'algorithme A2 à l'aide de simulations obtenues par l'algorithme A1, Identification des paramètres thermophysiques de trois polymères par exploitation de champs de température mesurés expérimentalement par thermographie infrarouge.
|
Page generated in 0.054 seconds