• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • Tagged with
  • 15
  • 15
  • 10
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Low cycle fatigue of shape memory alloys / Fatigue à faible nombre de cycles des matériaux à mémoire de forme

Zhang, Yahui 22 June 2018 (has links)
Dans cette thèse, nous proposons une analyse globale multi-échelles de la fatigue à faible nombre de cycles des matériaux à mémoire de forme (MMF). Dans un premier temps, une large campagne d’essais a été menée pour différents chargements thermomécaniques comprenant des tests de fatigue sous contrainte et déformation imposée et pour différentes fréquences de chargement. A partir des résultats des essais, un critère de fatigue, basé sur l’énergie de déformation, a été développé ; on montre que l’énergie de déformation est un paramètre pertinent pour prédire la fatigue des MMF en tenant compte du couplage thermomécanique et du type de chargement : contrainte ou déformation imposée. Ensuite, en prenant appui sur la répartition de l’énergie de l’hystérésis en dissipation et énergie stockée, on avance une interprétation physique du mécanisme de la fatigue des MMF. Dans la troisième partie, on propose une modélisation multi-échelles de l’initiation des fissures de fatigue dans les MMF à partir de la notion de plasticité de transformation (PlTr). Dans ce cadre, on montre que la fatigue de MMF est contrôlée par la (PlTr) et que la température maximale lors de la transformation de phase est le paramètre à retenir pour prédire la rupture par fatigue des MMF. Le modèle permet également de prédire le lieu d’initiation des premières fissures de fatigue. Enfin, un procédé – fondé sur l’«éducation» des MMF – permettant d’améliorer la résistance à la fatigue est proposé. / The thesis proposes a multi-scale comprehensive analysis of low cycle fatigue of shape memory alloys (SMAs). First, low cycle fatigue of SMAs is experimentally investigated; comprehensive tensile-tensile fatigue tests under both stress and strain controlled loadings at different frequencies are carried out and results are discussed. Second, a new strain energy-based fatigue criterion is developed; it is shown that the use of total strain energy is a relevant parameter to predict fatigue lifetime of SMAs for different thermomechanical conditions and under different types (strain-control or stress-control) loadings. A physical interpretation of the mechanism related to the low-cycle fatigue of SMAs is then provided based on the conversion of hysteresis work into dissipation and stored energy. Third, fatigue crack initiation during cyclic stress-induced phase transformation is modeled based on transformation induced plasticity (TRIP); it is shown that the maximum temperature during the cyclic loading is a relevant indicator of the fatigue of SMA. Furthermore, the effect of the macroscopic mechanical load on the the fatigue lifetime is addressed as well as the spatial location of crack initiation. Finally, a mechanical training process that allows enhancing resistance to low cycle fatigue of SMAs is proposed.
12

The Hot Optimal Transportation Meshfree (HOTM) Method for Extreme Multi-physics Problems

Wang, Hao 22 January 2021 (has links)
No description available.
13

Analytical Modeling and Impedance Characterization of Nonlinear, Steady-State Structural Dynamics in Thermomechanical Loading Environments

Goodpaster, Benjamin A. 27 August 2018 (has links)
No description available.
14

Couplages thermomécaniques dans les alliages à mémoire de forme : mesure de champs cinématique et thermique et modélisation multiéchelle / Thermomechanical coupling in shape memory alloys : thermal and kinematic full field measurements and multi-scale modeling

Maynadier, Anne 30 November 2012 (has links)
L’utilisation croissante des Alliages à Mémoire de Forme (AMF) dans des structures de plus en plus complexes, notamment en vue d'applications médicales, rend nécessaire la compréhension des phénomènes régissant leur comportement et plus précisément la pseudo-élasticité. Le fort couplage thermomécanique, résultant de la transformation de phase martensitique, est un point clé de ce comportement. Les travaux de thèse présentés sont consacrés à l’étude et la modélisation de ce couplage. Tout d’abord, la transformation de phase martensitique provoque une déformation et une émission de chaleur couplées qui peuvent se localiser en bandes de transformation sous sollicitation uniaxiale. Une partie de cette thèse a été consacrée au développement de la Corrélation d’Images InfraRouge, qui permet à partir d’un unique film IR de mesurer conjointement, en une seule analyse, les champs cinématiques et thermiques discrétisés sur un même maillage éléments finis. Une application à l’analyse d’un essai de traction sur AMF de type NiTi a été réalisée. Le comportement pseudo-élastique a aussi été abordé d’un point de vue modélisation. Une large part de ce travail de thèse a donc été consacrée à l’élaboration d’un modèle multiéchelle et multiaxial, décrivant le comportement d’un VER à partir de la physique de la transformation martensitique à l’échelle de la maille cristalline. L’approche est inspirée de modèles multiéchelles développés pour la modélisation d’autres couplages multiphysiques et notamment magnéto-élastique. La troisième partie de cette thèse a été consacrée à l’élaboration d’un modèle de structure 1D sous traction uniaxiale. Dans un premier temps un modèle de thermique 1D ainsi qu’un modèle mécanique phénoménologique à seuils ont été développés. Les simulations rendent compte des phénomènes de transformation diffuse accompagnant l’élasticité puis de la transformation localisée. L’algorithme est notamment capable de gérer les deux sens de transformation. Ce modèle met en compétition les deux phénomènes transitoires de génération et évacuation de la chaleur par la transformation de phase et les échanges thermiques avec l’environnement. Ainsi, il est capable de reproduire la relation liant le nombre de bandes de transformation générées à la vitesse de sollicitation et aux conditions aux limites thermiques. Un travail été initié pour coupler ce modèle de structure et de gestion de la thermique au modèle monocristallin multiaxial. Sans encore reproduire la localisation de la transformation en bande, les simulations de traction montrent un hystérésis, issu des pertes thermiques dans l’air ambiant, bien que le modèle de comportement multiéchelle élémentaire soit écrit dans un cadre réversible, l’irréversibilité et la localisation étant avant tout des effets de transferts. Le couplage thermomécanique à la source des comportements si spécifiques des AMF que sont la super élasticité et la mémoire de forme ont donc été étudiés sous divers points de vue : expérimentalement, par l’établissement de modèles de comportement, par la simulation de structures 1D et des échanges thermiques mis en jeu. Les outils et modèles ont été appliqués à l’étude du Ni49,75at%Ti, support de ce travail, mais sont facilement adaptables à tout autre AMF. L’approche utilisée pour la modélisation multi-échelle peut être étendue à d’autres couplages, par exemple en cumulant les couplages thermo- et magnéto- mécaniques en vu de l’étude des Alliages à Mémoire de Forme Magnétiques par exemple. / The increasing use of Shape Memory Alloys (SMA) for complex structure, especially for medical applications, requires a better understanding of the phenomena governing their behaviors and particularly the super-elasticity. The strong thermomechanical coupling resulting from the martensitic phase transformation is a key point of this behavior. The thesis is devoted to the study and modeling of this coupling. First, the martensitic phase transformation causes coupled local deformation and heat emission that can locate onto transformation bands when structure undergoes uniaxial stress. A part of this thesis has been devoted to the development of InfraRed Image Correlation (IRIC). This technique permits us to measure by a single analysis, from a single IR film, both kinematic and thermal fields discretized on the same finite element mesh. An application to the analysis of a tensile test on a NiTi type AMF has been made. Superelastic behavior is also discussed from a modeling point of view. A large part of this work has been devoted to the development of multiaxial multiscale model describing the behavior of a RVE from the description of martensitic transformation at the crystal scale. The approach is inspired from multiscale models developed for modeling other multiphysic couplings especially the magneto-elastic coupling. It is based on the comparison of the free energies of each component, without any topological description. A probabilistic comparison is made, using a Boltzmann distribution, to determine the internal variables : the volume fractions. Interfaces are not taken into account. This model allows the simulation of the effect of any thermo-mechanical loading. It well gives account of the superelasticity, including the asymmetry in tension / compression ... The third part of this thesis has been devoted to the development of a one dimensional model for structure under uniaxial tension. In a first step, a 1D thermal model and a phenomenological mechanical model, based on the Clausius Clapeyron diagram have been developed. The simulations account for the diffuse transformation accompanying the elasticity at the very beginning of stress-strain behavior, and localized phase transformation afterthat. The algorithm is capable of handling two-way transformation. This model emphasizes competition both transient phenomena : generation and heat dissipation by the phase transformation and heat exchange with environment. Thus, it is able to reproduce relationship linking the number of nucleated transformation bands to the strain rate and the thermal boundary conditions. A study has been initiated to couple this model to the singlecrystalline multiaxial RVE model detailed in the previous part. It is currently not able to model the localization phenomenon, but the simulations show a tensile hysteresis issued from the thermal losses in the air. Indeed, even if the local multiscale model is written in a reversible way, irreversibility and the localization are primarily structural effects. The thermomechanical coupling is at the origin of the so specific AMF behavior (super elasticity and shape memory effect), it has been studied from various points of view: experimentally, by establishing RVE models, by simulating 1D structures and heat exchange. Developed tools and models have been applied to the study of Ni49, 75at% Ti, but are easily adaptable to other AMF. The approach used for the multi-scale modeling can be extended to other couplings, such as couplings cumulating the thermo-and magneto-mechanical aspect for the study of Magnetic Shape Memory Alloys for example.
15

Couplage thermomécanique lors de la soudure par ultrasons : application pour les thermoplastiques / Thermomechanical coupling during ultrasonic welding : application to thermo- plastic materials

Ha Minh, Duc 03 November 2009 (has links)
Cette thèse présente un couplage thermodynamique pour une modélisation approfondie du processus de soudure par ultrasons, surtout la soudure des thermoplastiques. Il s’agit de bien connaître le mode de fonctionnement des ensembles acoustiques réalisant la soudure ainsi que le comportement des matériaux à souder. En conséquence, les propriétés de ces matériaux, surtout celles nécessaires pour la modélisation par éléments finis, sont identifiées. Les paramètres mécaniques et thermiques sont mesurés en statique et ils sont comparés avec les résultats calcules par homogénéisation. Certains sont déterminés en dynamique, selon la fréquence et aussi en fonction de la température. Ceci est très utile parce que les matériaux travaillent à haute fréquence ultrasonique et que la température lors de la soudure change fortement. La machine de soudage par ultrasons (l’ensemble acoustique) a déjà été conçue et fabriquée. La modélisation EF en 3D avec Abaqus nous montre bien ses comportements modaux et vibratoires. Ensuite, les matériaux à souder sont introduits en modélisants le contact dynamique entre l’ensemble acoustique et la bande à souder. Ce modèle nous permet de déterminer le temps de contact et la compression dans les matériaux en fonction de la force de maintien. La dissipation d’énergie qui est engendrée par viscosité des matériaux à souder est calculée et introduite dans le modèle couplé thermomécanique. Le transfert de chaleur dans tout l’ensemble lors de la soudure est modélisé et il montre le champ de température, surtout la température à l’interface entre deux couches de matériaux. Cette modélisation est complétée en utilisant la méthode ALE (Arbitrary Lagrangian Eulerian) afin de tenir compte du mouvement d’avancement des bandes à souder / This thesis presents a thermomechanical coupling for advanced modeling of welding processes, especially the ultrasonic welding for thermoplastic materials. The mode of operation of welding machines and the behaviour of welding materials must be well known. Consequently, the properties of these materials, especially those required for finite element modelling, are identified. The mechanical and thermal parameters are measured in static mode and are compared with results calculated by homogenization. Some parameters are also measured dynamically and show a dependency on frequency and temperature. This is very useful because the materials are solicited at high ultrasonic frequency and the temperature during the welding changes significantly. The welding ultrasonic machine (the acoustic ensemble) has already been designed and manufactured. The modelling by finite element in 3D with ABAQUS shows good modal and vibration behaviours. Then, the welding materials are introduced by modelling the dynamic contact between the acoustic ensemble and welding band. This model allows us to determine the contact duration and the compression in the materials depending on the applied load. The dissipation of energy that is generated by viscosity of welding materials is calculated and included in the thermomechanical coupled model. The heat transfer in the whole system is modeled and enable to compute the temperature field, especially the temperature at the interface between two layers of welding materials. This model is completed using the ALE (Arbitrary Lagrangian Eulerian) method to take into account the displacement of the welding bands

Page generated in 0.3054 seconds