• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 6
  • Tagged with
  • 23
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Biochemical Charactherization Of Recombinant 20s Proteasome From Thermoplasma Volcanium And Cloning Of It&#039 / s Regulatory Subunit Gene

Gozde, Baydar 01 January 2006 (has links) (PDF)
In this study, we have characterized some biochemical and electrophoretic features of recombinant 20S Proteasome from a thermoacidophilic archaeon Thermoplasma volcanium. As revealed by SDS-PAGE the 20S Proteasome was composed of two subunits, &amp / #945 / - and &amp / #946 / - subunits with estimated molecular masses of 24 kDa and 23 kDa, respectively. The highest chymotryptic activity was observed over an alkaline pH range (pH 8.0 &ndash / pH 9.0) and the optimum temperature for the activity was determined as 85oC. The heat stability of proteasome was quite high after treatment at 98oC for 30 minutes, 64 % of the activity has still been retained. The highest activity associated with the Thermoplasma volcanium proteasome was found to be peptidylglutamyl peptidase activity. Within the scope of this project, also, we have cloned a 26S Proteasome related Regulatory Subunit gene of Thermoplasma volcanium. For cloning we have followed a PCR based approach. Amplification of 26S Proteasome Regulatory Subunit gene from chromosomal DNA of Tp. volcanium yielded a product of 1419 bp containing an open reading frame of 1128 bp comprising the structural gene. The PCR amplicon was cloned using pDrive vector in E.coli TG-1 cells. Out of ten putative recombinants, three plasmids, E.coli pD1-6, E.coli pD2-3, E.coli pD3-1, were proved to be true recombinants and selected for further characterization by restriction mapping and expression studies. ATPase activities of cell free extracts from both recombinant and non-recombinant E.coli strains were measured and found that ATPase activities in cell free extracts of recombinant strains were 10 times higher than non-recombinants. This result indicates sucessful expression of the cloned regulatory subunit gene with ATPase activity in E.coli.
22

Purification And Characterization Of Cytoplasmic And Proteasome Associated Chymotrypsin-like Proteases From Thermoplasma Volcanium

Ozdemir, Fatma Inci 01 October 2003 (has links) (PDF)
ABSTRACT PURIFICATION AND CHARACTERIZATION OF CYTOPLASMIC AND PROTEASOME ASSOCIATED CHYMOTRYPSIN-LIKE PROTEASES FROM THERMOPLASMA VOLCANIUM &Ouml / zdemir, F.inci Ph.D., Department of Biology Supervisor: Prof. Dr. Semra Kocabiyik September, 147 pages In this study, two novel cytoplasmic serine proteases were isolated and characterized from thermophilic archaea Thermoplasma volcanium. The first protease was purified by ion exchange and affinity chromatographies and identified as a chymotrypsin-like serine protease mainly based on its substrate profile and inhibition pattern. The presence of protease activity was analyzed by gelatin zymography which was detected as a single band (35 kDa). Optimum temperature was found to be 60oC for azocasein hydrolysis and 50oC for N-Suc-Phe-pNA hydrolysis. Optimum activity was observed in the pH range of 6.0-8.0 with a maximum value at pH 7.0. The Km and Vmax values for the purified protease were calculated to be 2.2 mM and 40 &micro / moles of p-nitroanilide released min-1.ml-1, respectively, for N-Suc-Phe-PNA as substrate. Ca2+ and Mg2+ at 4 mM concentrations were the most effective divalent cations in activating the enzyme. In the second stage of this study, 20S proteasome of Tp. volcanium with substantial chymotrypsin-like activity was purified and characterized. This enzyme complex was purified with 19.1 U/mg specific activities from cell free extract by a four-step procedure. SDS-PAGE analysis revealed two strong bands with relative molecular masses of 26 kDa (&amp / #945 / -subunit) and 21.9 kDa (&amp / #946 / -subunit). Tp. volcanium 20S proteasome predominantly catalyzed cleavage of peptide bonds carboxyl to the acidic residue Glu (postglutamyl activity) and the hydrophobic residue Phe (chymotrypsin-like activity) in short chromogenic peptides. Low-level hydrolyzing activity was also detected carboxyl to basic residue Arg (trypsin-like activity). Chymotrypsin-like activity of Tp. volcanium 20S proteasome was significantly inhibited by chymotrypsin specific serine protease inhibitor chymostatin. When N-CBZ-Arg was used which is a substrate for trypsin, 20S proteasome was strongly inhibited by TLCK. The optimum temperature for Ala-Ala-Phe-pNA hydrolysis by the Tp. volcanium 20S proteasome was 55oC and the optimum pH was 7.5. The chymotryptic activity was significantly enhanced by divalent cations such as Ca+2 and Mg2+ at high concentrations, i.e. 125-250 mM. Keywords:Serine protease, 20S proteasome, archaea, thermophilic protease, Thermoplasma volcanium, chymotrypsin-like serine protease.
23

Construction Of Various Fusion Proteins Of Recombinant Citrate Synthase From Thermoplasma Volcanium

Ozdogan, Seda 01 June 2004 (has links) (PDF)
In this study, a strategy called gene splicing by overlap extension, &ldquo / Gene SOEing&rdquo / , was used for the construction of the fusion proteins with the purpose of increasing the thermostability of mesophilic enzymes by incorporation of stability domain from a thermostable enzyme. Gene SOEing is a PCR-based approach for recombining DNA molecules at precise junctions irrespective of nucleotide sequences at the recombination site and without the use of restriction endonucleases or ligase. In fusion constructs, as the stability determinant Thermoplasma volcanium citrate synthase (CS) large domain has been used. This gene has recently been cloned in our laboratory. In two different fusions, as fusion partners, dehalogenase II (dehCII) gene of Pseudomonas sp. CBS3 and aminoglycoside-3&#039 / -phosphotransferase-II (APH(3&#039 / )-II) gene of E. coli were employed. Following the Gene SOEing, two fusion products, 1722 bp long CS Large Domain-dehCII and 1750 bp long CS Large Domain-APH(3&#039 / )-II were constructed. Also a 1586 bp long dehCII-APH(3&#039 / )-II fusion was prepared. Three fusion constructs were cloned in E. coli. Cloning was confirmed in each case, by restriction analysis of the isolated plasmids from recombinant colonies. APH(3&#039 / )-II gene associated with CS Large Domain-APH(3&#039 / )-II and dehCII-APH(3&#039 / )-II fusion constructs were successfully expressed in E. coli as revealed by enzyme assay and antibiotic agar plate assay. CS Large Domain-APH(3&#039 / )-II fusion protein retained 9.4% of the original APH(3&#039 / )-II activity after 10 minutes at 60&ordm / C. However, CS Large Domain-dehCII and dehCII-APH(3&#039 / )-II fusions did not display any dehalogenase activity.

Page generated in 0.0508 seconds