• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Complex thermorheology of living cells

Schmidt, Sebastian, Kießling, Tobias, Warmt, Enrico, Fritsch, Anatol, Stange, Roland, Käs, Josef A. 13 July 2015 (has links) (PDF)
Temperature has a reliable and nearly instantaneous influence on mechanical responses of cells. As recently published, MCF-10A normal epithelial breast cells follow the time-temperature superposition (TTS) principle. Here, we measured thermorheological behaviour of eight common cell types within physiologically relevant temperatures and applied TTS to creep compliance curves. Our results showed that superposition is not universal and was seen in four of the eight investigated cell types. For the other cell types, transitions of thermorheological responses were observed at 36 °C. Activation energies (EA) were calculated for all cell types and ranged between 50 and 150 kJ mol-1. The scaling factors of the superposition of creep curves were used to group the cell lines into three categories. They were dependent on relaxation processes as well as structural composition of the cells in response to mechanical load and temperature increase. This study supports the view that temperature is a vital parameter for comparing cell rheological data and should be precisely controlled when designing experiments.
2

Complex thermorheology of living cells

Schmidt, Sebastian, Kießling, Tobias, Warmt, Enrico, Fritsch, Anatol, Stange, Roland, Käs, Josef A. January 2015 (has links)
Temperature has a reliable and nearly instantaneous influence on mechanical responses of cells. As recently published, MCF-10A normal epithelial breast cells follow the time-temperature superposition (TTS) principle. Here, we measured thermorheological behaviour of eight common cell types within physiologically relevant temperatures and applied TTS to creep compliance curves. Our results showed that superposition is not universal and was seen in four of the eight investigated cell types. For the other cell types, transitions of thermorheological responses were observed at 36 °C. Activation energies (EA) were calculated for all cell types and ranged between 50 and 150 kJ mol-1. The scaling factors of the superposition of creep curves were used to group the cell lines into three categories. They were dependent on relaxation processes as well as structural composition of the cells in response to mechanical load and temperature increase. This study supports the view that temperature is a vital parameter for comparing cell rheological data and should be precisely controlled when designing experiments.

Page generated in 0.0528 seconds