Spelling suggestions: "subject:"thesis:applied mathematics"" "subject:"presented.applied mathematics""
61 |
An explicit finite difference method for analyzing hazardous rock massBasson, Gysbert 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: FLAC3D is a three-dimensional explicit nite difference program for solving a variety of
solid mechanics problems, both linear and non-linear. The development of the algorithm
and its initial implementation were performed by Itasca Consulting Group Inc. The main
idea of the algorithm is to discritise the domain of interest into a Lagrangian grid where
each cell represents an element of the material. Each cell can then deform according to a
prescribed stress/strain law together with the equations of motion. An in-depth study of
the algorithm was performed and implemented in Java. During the implementation, it was
observed that the type of boundary conditions typically used has a major in uence on the
accuracy of the results, especially when boundaries are close to regions with large stress
variations, such as in mining excavations. To improve the accuracy of the algorithm, a
new type of boundary condition was developed where the FLAC3D domain is embedded
in a linear elastic material, named the Boundary Node Shell (BNS). Using the BNS
shows a signi cant improvement in results close to excavations. The FLAC algorithm is
also quite amendable to paralellization and a multi-threaded version that makes use of multiple Central Processing Unit (CPU) cores was developed to optimize the speed of the
algorithm. The nal outcome is new non-commercial Java source code (JFLAC) which
includes the Boundary Node Shell (BNS) and shared memory parallelism over and above
the basic FLAC3D algorithm. / AFRIKAANSE OPSOMMING: FLAC3D is 'n eksplisiete eindige verskil program wat 'n verskeidenheid liniêre en nieliniêre soliede meganika probleme kan oplos. Die oorspronklike algoritme en die implimentasies
daarvan was deur Itasca Consulting Group Inc. toegepas. Die hoo dee van die
algoritme is om 'n gebied te diskritiseer deur gebruik te maak van 'n Lagrangese rooster,
waar elke sel van die rooster 'n element van die rooster materiaal beskryf. Elke sel kan
dan vervorm volgens 'n sekere spannings/vervormings wet. 'n Indiepte ondersoek van
die algoritme was uitgevoer en in Java geïmplimenteer. Tydens die implementering was
dit waargeneem dat die grense van die rooster 'n groot invloed het op die akkuraatheid
van die resultate. Dit het veral voorgekom in areas waar stress konsentrasies hoog is,
gewoonlik naby areas waar myn uitgrawings gemaak is. Dit het die ontwikkelling van 'n
nuwe tipe rand kondisie tot gevolg gehad, sodat die akkuraatheid van die resultate kon
verbeter. Die nuwe rand kondisie, genaamd die Grens Node Omhulsel (GNO), aanvaar
dat die gebied omring is deur 'n elastiese materiaal, wat veroorsaak dat die grense van die
gebied 'n elastiese reaksie het op die stress binne die gebied. Die GNO het 'n aansienlike verbetering in die resultate getoon, veral in areas naby myn uitgrawings. Daar was ook
waargeneem dat die FLAC algoritme parralleliseerbaar is en het gelei tot die implentering
van 'n multi-SVE weergawe van die sagteware om die spoed van die algoritme te optimeer.
Die nale uitkomste is 'n nuwe nie-kommersiële Java weergawe van die algoritme
(JFLAC), wat die implimentering van die nuwe GNO randwaardekondisie insluit, asook
toelaat vir die gebruik van multi- Sentrale Verwerkings Eenheid (SVE) as 'n verbetering
op die basiese FLAC3D algoritme.
|
62 |
Reinforcement learning : theory, methods and application to decision support systemsMouton, Hildegarde Suzanne 12 1900 (has links)
Thesis (MSc (Applied Mathematics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: In this dissertation we study the machine learning subfield of Reinforcement Learning (RL).
After developing a coherent background, we apply a Monte Carlo (MC) control algorithm
with exploring starts (MCES), as well as an off-policy Temporal-Difference (TD) learning
control algorithm, Q-learning, to a simplified version of the Weapon Assignment (WA)
problem.
For the MCES control algorithm, a discount parameter of τ
= 1 is used. This gives very
promising results when applied to 7 × 7 grids, as well as 71 × 71 grids. The same discount
parameter cannot be applied to the Q-learning algorithm, as it causes the Q-values to
diverge. We take a greedy approach, setting ε = 0, and vary the learning rate (α ) and the
discount parameter (τ). Experimentation shows that the best results are found with set
to 0.1 and
constrained in the region 0.4 ≤ τ ≤ 0.7.
The MC control algorithm with exploring starts gives promising results when applied to the
WA problem. It performs significantly better than the off-policy TD algorithm, Q-learning,
even though it is almost twice as slow.
The modern battlefield is a fast paced, information rich environment, where discovery of
intent, situation awareness and the rapid evolution of concepts of operation and doctrine
are critical success factors. Combining the techniques investigated and tested in this work
with other techniques in Artificial Intelligence (AI) and modern computational techniques
may hold the key to solving some of the problems we now face in warfare. / AFRIKAANSE OPSOMMING: Die fokus van hierdie verhandeling is die masjienleer-algoritmes in die veld van versterkingsleer.
’n Koherente agtergrond van die veld word gevolg deur die toepassing van ’n
Monte Carlo (MC) beheer-algoritme met ondersoekende begintoestande, sowel as ’n afbeleid
Temporale-Verskil beheer-algoritme, Q-leer, op ’n vereenvoudigde weergawe van die
wapentoekenningsprobleem.
Vir die MC beheer-algoritme word ’n afslagparameter van τ = 1 gebruik. Dit lewer belowende
resultate wanneer toegepas op 7 × 7 roosters, asook op 71 × 71 roosters. Dieselfde
afslagparameter kan nie op die Q-leer algoritme toegepas word nie, aangesien dit veroorsaak
dat die Q-waardes divergeer. Ons neem ’n gulsige aanslag deur die gulsigheidsparameter te
verstel na ε = 0. Ons varieer dan die leertempo ( α) en die afslagparameter (τ). Die beste
eksperimentele resultate is behaal wanneer = 0.1 en as die afslagparameter vasgehou word
in die gebied 0.4 ≤ τ ≤ 0.7.
Die MC beheer-algoritme lewer belowende resultate wanneer toegepas op die wapentoekenningsprobleem.
Dit lewer beduidend beter resultate as die Q-leer algoritme, al neem dit
omtrent twee keer so lank om uit te voer.
Die moderne slagveld is ’n omgewing ryk aan inligting, waar dit kritiek belangrik is om
vinnig die vyand se planne te verstaan, om bedag te wees op die omgewing en die konteks
van gebeure, en waar die snelle ontwikkeling van die konsepte van operasie en doktrine lei tot
sukses. Die tegniekes wat in die verhandeling ondersoek en getoets is, en ander kunsmatige
intelligensie tegnieke en moderne berekeningstegnieke saamgesnoer, mag dalk die sleutel hou
tot die oplossing van die probleme wat ons tans in die gesig staar in oorlogvoering.
|
63 |
Off-line signature verification using ensembles of local Radon transform-based HMMsPanton, Mark Stuart 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: An off-line signature verification system attempts to authenticate the identity
of an individual by examining his/her handwritten signature, after it has
been successfully extracted from, for example, a cheque, a debit or credit card
transaction slip, or any other legal document. The questioned signature is typically
compared to a model trained from known positive samples, after which
the system attempts to label said signature as genuine or fraudulent.
Classifier fusion is the process of combining individual classifiers, in order to
construct a single classifier that is more accurate, albeit computationally more
complex, than its constituent parts. A combined classifier therefore consists
of an ensemble of base classifiers that are combined using a specific fusion
strategy.
In this dissertation a novel off-line signature verification system, using a
multi-hypothesis approach and classifier fusion, is proposed. Each base classifier
is constructed from a hidden Markov model (HMM) that is trained from
features extracted from local regions of the signature (local features), as well as
from the signature as a whole (global features). To achieve this, each signature
is zoned into a number of overlapping circular retinas, from which said features
are extracted by implementing the discrete Radon transform. A global retina,
that encompasses the entire signature, is also considered.
Since the proposed system attempts to detect high-quality (skilled) forgeries,
it is unreasonable to assume that samples of these forgeries will be available
for each new writer (client) enrolled into the system. The system is therefore
constrained in the sense that only positive training samples, obtained
from each writer during enrolment, are available. It is however reasonable to
assume that both positive and negative samples are available for a representative
subset of so-called guinea-pig writers (for example, bank employees). These signatures constitute a convenient optimisation set that is used to select
the most proficient ensemble. A signature, that is claimed to belong to
a legitimate client (member of the general public), is therefore rejected or accepted
based on the majority vote decision of the base classifiers within the
most proficient ensemble.
When evaluated on a data set containing high-quality imitations, the inclusion
of local features, together with classifier combination, significantly increases
system performance. An equal error rate of 8.6% is achieved, which
compares favorably to an achieved equal error rate of 12.9% (an improvement
of 33.3%) when only global features are considered.
Since there is no standard international off-line signature verification data
set available, most systems proposed in the literature are evaluated on data
sets that differ from the one employed in this dissertation. A direct comparison
of results is therefore not possible. However, since the proposed system
utilises significantly different features and/or modelling techniques than those
employed in the above-mentioned systems, it is very likely that a superior combined
system can be obtained by combining the proposed system with any of
the aforementioned systems. Furthermore, when evaluated on the same data
set, the proposed system is shown to be significantly superior to three other
systems recently proposed in the literature. / AFRIKAANSE OPSOMMING: Die doel van ’n statiese handtekening-verifikasiestelsel is om die identiteit
van ’n individu te bekragtig deur sy/haar handgeskrewe handtekening te analiseer,
nadat dit suksesvol vanaf byvoorbeeld ’n tjek,’n debiet- of kredietkaattransaksiestrokie,
of enige ander wettige dokument onttrek is. Die bevraagtekende
handtekening word tipies vergelyk met ’n model wat afgerig is met bekende
positiewe voorbeelde, waarna die stelsel poog om die handtekening as eg
of vervals te klassifiseer.
Klassifiseerder-fusie is die proses waardeer individuele klassifiseerders gekombineer
word, ten einde ’n enkele klassifiseerder te konstrueer, wat meer akkuraat,
maar meer berekeningsintensief as sy samestellende dele is. ’n Gekombineerde
klassifiseerder bestaan derhalwe uit ’n ensemble van basis-klassifiseerders,
wat gekombineer word met behulp van ’n spesifieke fusie-strategie.
In hierdie projek word ’n nuwe statiese handtekening-verifikasiestelsel, wat
van ’n multi-hipotese benadering en klassifiseerder-fusie gebruik maak, voorgestel.
Elke basis-klassifiseerder word vanuit ’n verskuilde Markov-model (HMM)
gekonstrueer, wat afgerig word met kenmerke wat vanuit lokale gebiede in die
handtekening (lokale kenmerke), sowel as vanuit die handtekening in geheel
(globale kenmerke), onttrek is. Ten einde dit te bewerkstellig, word elke
handtekening in ’n aantal oorvleulende sirkulêre retinas gesoneer, waaruit kenmerke
onttrek word deur die diskrete Radon-transform te implementeer. ’n
Globale retina, wat die hele handtekening in beslag neem, word ook beskou.
Aangesien die voorgestelde stelsel poog om hoë-kwaliteit vervalsings op te
spoor, is dit onredelik om te verwag dat voorbeelde van hierdie handtekeninge
beskikbaar sal wees vir elke nuwe skrywer (kliënt) wat vir die stelsel registreer.
Die stelsel is derhalwe beperk in die sin dat slegs positiewe afrigvoorbeelde, wat
bekom is van elke skrywer tydens registrasie, beskikbaar is. Dit is egter redelik om aan te neem dat beide positiewe en negatiewe voorbeelde beskikbaar sal
wees vir ’n verteenwoordigende subversameling van sogenaamde proefkonynskrywers,
byvoorbeeld bankpersoneel. Hierdie handtekeninge verteenwoordig
’n gereieflike optimeringstel, wat gebruik kan word om die mees bekwame ensemble
te selekteer. ’n Handtekening, wat na bewering aan ’n wettige kliënt
(lid van die algemene publiek) behoort, word dus verwerp of aanvaar op grond
van die meerderheidstem-besluit van die basis-klassifiseerders in die mees bekwame
ensemble.
Wanneer die voorgestelde stelsel op ’n datastel, wat hoë-kwaliteit vervalsings
bevat, ge-evalueer word, verhoog die insluiting van lokale kenmerke en
klassifiseerder-fusie die prestasie van die stelsel beduidend. ’n Gelyke foutkoers
van 8.6% word behaal, wat gunstig vergelyk met ’n gelyke foutkoers van 12.9%
(’n verbetering van 33.3%) wanneer slegs globale kenmerke gebruik word.
Aangesien daar geen standard internasionale statiese handtekening-verifikasiestelsel
bestaan nie, word die meeste stelsels, wat in die literatuur voorgestel
word, op ander datastelle ge-evalueer as die datastel wat in dié projek gebruik
word. ’n Direkte vergelyking van resultate is dus nie moontlik nie. Desnieteenstaande,
aangesien die voorgestelde stelsel beduidend ander kenmerke
en/of modeleringstegnieke as dié wat in bogenoemde stelsels ingespan word gebruik,
is dit hoogs waarskynlik dat ’n superieure gekombineerde stelsel verkry
kan word deur die voorgestelde stelsel met enige van bogenoemde stelsels te
kombineer. Voorts word aangetoon dat, wanneer op dieselfde datastel geevalueerword,
die voorgestelde stelstel beduidend beter vaar as drie ander
stelsels wat onlangs in die literatuur voorgestel is.
|
64 |
Design of an automated decision support system for scheduling tasks in a generalized job-shopBester, Margarete Joan 04 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2006. / Please refer to full text for abstract
|
65 |
Implementation and evaluation of two prediction techniques for the Lorenz time seriesHuddlestone, Grant E 03 1900 (has links)
Thesis (MSc)-- Stellenbosch University, 2003. / ENGLISH ABSTRACT: This thesis implements and evaluates two prediction techniques used to forecast deterministic chaotic
time series. For a large number of such techniques, the reconstruction of the phase space attractor
associated with the time series is required.
Embedding is presented as the means of reconstructing the attractor from limited data. Methods for
obtaining the minimal embedding dimension and optimal time delay from the false neighbour heuristic
and average mutual information method are discussed.
The first prediction algorithm that is discussed is based on work by Sauer, which includes the implementation
of the singular value decomposition on data obtained from the embedding of the time series
being predicted.
The second prediction algorithm is based on neural networks. A specific architecture, suited to the
prediction of deterministic chaotic time series, namely the time dependent neural network architecture
is discussed and implemented. Adaptations to the back propagation training algorithm for use with the
time dependent neural networks are also presented.
Both algorithms are evaluated by means of predictions made for the well-known Lorenz time series.
Different embedding and algorithm-specific parameters are used to obtain predicted time series. Actual
values corresponding to the predictions are obtained from Lorenz time series, which aid in evaluating
the prediction accuracies. The predicted time series are evaluated in terms of two criteria, prediction
accuracy and qualitative behavioural accuracy. Behavioural accuracy refers to the ability of the algorithm
to simulate qualitative features of the time series being predicted.
It is shown that for both algorithms the choice of the embedding dimension greater than the minimum
embedding dimension, obtained from the false neighbour heuristic, produces greater prediction accuracy.
For the neural network algorithm, values of the embedding dimension greater than the minimum embedding
dimension satisfy the behavioural criterion adequately, as expected. Sauer's algorithm has the
greatest behavioural accuracy for embedding dimensions smaller than the minimal embedding dimension.
In terms of the time delay, it is shown that both algorithms have the greatest prediction accuracy for
values of the time delay in a small interval around the optimal time delay.
The neural network algorithm is shown to have the greatest behavioural accuracy for time delay close to
the optimal time delay and Sauer's algorithm has the best behavioural accuracy for small values of the
time delay.
Matlab code is presented for both algorithms. / AFRIKAANSE OPSOMMING: In hierdie tesis word twee voorspellings-tegnieke geskik vir voorspelling van deterministiese chaotiese
tydreekse ge"implementeer en geevalueer. Vir sulke tegnieke word die rekonstruksie van die aantrekker in
fase-ruimte geassosieer met die tydreeks gewoonlik vereis.
Inbedmetodes word aangebied as 'n manier om die aantrekker te rekonstrueer uit beperkte data. Metodes
om die minimum inbed-dimensie te bereken uit gemiddelde wedersydse inligting sowel as die optimale
tydsvertraging te bereken uit vals-buurpunt-heuristiek, word bespreek.
Die eerste voorspellingsalgoritme wat bespreek word is gebaseer op 'n tegniek van Sauer. Hierdie algoritme
maak gebruik van die implementering van singulierwaarde-ontbinding van die ingebedde tydreeks
wat voorspel word.
Die tweede voorspellingsalgoritme is gebaseer op neurale netwerke. 'n Spesifieke netwerkargitektuur
geskik vir deterministiese chaotiese tydreekse, naamlik die tydafhanklike neurale netwerk argitektuur
word bespreek en ge"implementeer. 'n Modifikasie van die terugprapagerende leer-algoritme vir gebruik
met die tydafhanklike neurale netwerk word ook aangebied.
Albei algoritmes word geevalueer deur voorspellings te maak vir die bekende Lorenz tydreeks. Verskeie
inbed parameters en ander algoritme-spesifieke parameters word gebruik om die voorspelling te maak.
Die werklike waardes vanuit die Lorentz tydreeks word gebruik om die voorspellings te evalueer en om
voorspellingsakkuraatheid te bepaal.
Die voorspelde tydreekse word geevalueer op grand van twee kriteria, naamlik voorspellingsakkuraatheid,
en kwalitatiewe gedragsakkuraatheid. Gedragsakkuraatheid verwys na die vermoe van die algoritme om
die kwalitatiewe eienskappe van die tydreeks korrek te simuleer.
Daar word aangetoon dat vir beide algoritmes die keuse van inbed-dimensie grater as die minimum inbeddimensie
soos bereken uit die vals-buurpunt-heuristiek, grater akkuraatheid gee. Vir die neurale netwerkalgoritme
gee 'n inbed-dimensie grater as die minimum inbed-dimensie ook betel' gedragsakkuraatheid
soos verwag. Vir Sauer se algoritme, egter, word betel' gedragsakkuraatheid gevind vir 'n inbed-dimensie
kleiner as die minimale inbed-dimensie.
In terme van tydsvertraging word dit aangetoon dat vir beide algoritmes die grootste voorspellingsakkuraatheid
verkry word by tydvertragings in 'n interval rondom die optimale tydsvetraging.
Daar word ook aangetoon dat die neurale netwerk-algoritme die beste gedragsakkuraatheid gee vir
tydsvertragings naby aan die optimale tydsvertraging, terwyl Sauer se algoritme betel' gedragsakkuraatheid
gee by kleineI' waardes van die tydsvertraging.
Die Matlab kode van beide algoritmes word ook aangebied.
|
66 |
Grain regression analysisSullwald, Wichard 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Grain regression analysis forms an essential part of solid rocket motor simulation.
In this thesis a numerical grain regression analysis module is developed
as an alternative to cumbersome and time consuming analytical methods. The
surface regression is performed by the level-set method, a numerical interface
advancement scheme. A novel approach to the integration of the surface area
and volume of a numerical interface, as defined implicitly in a level-set framework,
by means of Monte-Carlo integration is proposed. The grain regression
module is directly coupled to a quasi -1D internal ballistics solver in an on-line
fashion, in order to take into account the effects of spatially varying burn rate
distributions. A multi-timescale approach is proposed for the direct coupling
of the two solvers. / AFRIKAANSE OPSOMMING: Gryn regressie analise vorm ’n integrale deel van soliede vuurpylmotor simulasie.
In hierdie tesis word ’n numeriese gryn regressie analise model, as ’n alternatief
tot dikwels omslagtige en tydrowende analitiese metodes, ontwikkel.
Die oppervlak regressie word deur die vlak-set metode, ’n numeriese koppelvlak
beweging skema uitgevoer. ’n Nuwe benadering tot die integrasie van die
buite-oppervlakte en volume van ’n implisiete numeriese koppelvlak in ’n vlakset
raamwerk, deur middel van Monte Carlo-integrasie word voorgestel. Die
gryn regressie model word direk en aanlyn aan ’n kwasi-1D interne ballistiek
model gekoppel, ten einde die uitwerking van ruimtelik-wisselende brand-koers
in ag te neem. ’n Multi-tydskaal benadering word voorgestel vir die direkte
koppeling van die twee modelle.
|
67 |
Long-term tracking of multiple interacting pedestrians using a single cameraKeaikitse, Advice Seiphemo 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Object detection and tracking are important components of many computer
vision applications including automated surveillance. Automated surveillance
attempts to solve the challenges associated with closed-circuit camera systems.
These include monitoring large numbers of cameras and the associated
labour costs, and issues related to targeted surveillance. Object detection is
an important step of a surveillance system and must overcome challenges such
as changes in object appearance and illumination, dynamic background objects
like ickering screens, and shadows. Our system uses Gaussian mixture
models, which is a background subtraction method, to detect moving objects.
Tracking is challenging because measurements from the object detection stage
are not labelled and could be from false targets. We use multiple hypothesis
tracking to solve this measurement origin problem. Practical long-term tracking
of objects should have re-identi cation capabilities to deal with challenges
arising from tracking failure and occlusions. In our system each tracked object
is assigned a one-class support vector machine (OCSVM) which learns the
appearance of that object. The OCSVM is trained online using HSV colour
features. Therefore, objects that were occluded or left the scene can be reidenti
ed and their tracks extended. Standard, publicly available data sets are
used for testing. The performance of the system is measured against ground
truth using the Jaccard similarity index, the track length and the normalized
mean square error. We nd that the system performs well. / AFRIKAANSE OPSOMMING: Die opsporing en volging van voorwerpe is belangrike komponente van baie
rekenaarvisie toepassings, insluitend outomatiese bewaking. Outomatiese bewaking
poog om die uitdagings wat verband hou met geslote kring kamera
stelsels op te los. Dit sluit in die monitering van groot hoeveelhede kameras en
die gepaardgaande arbeidskoste, en kwessies wat verband hou met toegespitse
bewaking. Die opsporing van voorwerpe is 'n belangrike stap in 'n bewakingstelsel
en moet uitdagings soos veranderinge in die voorwerp se voorkoms en
beligting, dinamiese agtergrondvoorwerpe soos ikkerende skerms, en skaduwees
oorkom. Ons stelsel maak gebruik van Gaussiese mengselmodelle, wat
'n agtergrond-aftrek metode is, om bewegende voorwerpe op te spoor. Volging
is 'n uitdaging, want afmetings van die voorwerp-opsporing stadium is
nie gemerk nie en kan afkomstig wees van valse teikens. Ons gebruik verskeie
hipotese volging (multiple hypothesis tracking ) om hierdie meting-oorsprong
probleem op te los. Praktiese langtermynvolging van voorwerpe moet heridenti
seringsvermoëns besit, om die uitdagings wat voortspruit uit mislukte
volging en okklusies te kan hanteer. In ons stelsel word elke gevolgde voorwerp
'n een-klas ondersteuningsvektormasjien (one-class support vector machine,
OCSVM) toegeken, wat die voorkoms van daardie voorwerp leer. Die OCSVM
word aanlyn afgerig met die gebruik van HSV kleurkenmerke. Daarom kan
voorwerpe wat verdwyn later her-identi seer word en hul spore kan verleng
word. Standaard, openbaar-beskikbare datastelle word vir toetse gebruik. Die
prestasie van die stelsel word gemeet teen korrekte afvoer, met behulp van die
Jaccard ooreenkoms-indeks, die spoorlengte en die genormaliseerde gemiddelde
kwadraatfout. Ons vind dat die stelsel goed presteer.
|
68 |
Thermal and colour data fusion for people detection and trackingJoubert, Pierre 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: In this thesiswe approach the problem of tracking multiple people individually in a video sequence.
Automatic object detection and tracking is non-trivial as humans have complex and
mostly unpredictable movements, and there are sensor noise and measurement uncertainties
present. We consider traditional object detection methods and decide to use thermal
data for the detection step. This choice is supported by the robustness of thermal data compared
to colour data in unfavourable lighting conditions and in surveillance applications. A
drawback of using thermal data is that we lose colour information, since the sensor interprets
the heat emission of the body rather than visible light. We incorporate a colour sensor
which is used to build features for each detected object. These features are used to help
determine correspondences in detected objects over time.
A problem with traditional blob detection algorithms, which typically consist of background
subtraction followed by connected-component labelling, is that objects can appear to split
or merge, or disappear in a few frames. We decide to add ‘dummy’ blobs in an effort to
counteract these problems. We refrain from making any hard decisions with respect to the
blob correspondences over time, and rather let the system decide which correspondences
are more probable. Furthermore, we find that the traditional Markovian approach of determining
correspondences between detected blobs in the current time step and only the
previous time step can lead to unwanted behaviour. We rather consider a sequence of time
steps and optimize the tracking across them. We build a composite correspondence model
and weigh each correspondence according to similarity (correlation) in object features. All
possible tracks are determined through this model and a likelihood is calculated for each.
Using the best scoring tracks we then label all the detections and use this labelling as measurement
input for a tracking filter.
We find that the window tracking approach shows promise even though the data we us for
testing is of poor quality and noisy. The system struggles with cluttered scenes and when a
lot of dummy nodes are present. Nonetheless our findings act as a proof of concept and we
discuss a few future improvements that can be considered. / AFRIKAANSE OPSOMMING: In hierdie tesis benader ons die probleemomverskeiemense individueel in ’n video-opname
op te spoor en te volg. Outomatiese voorwerp-opsporing en -volging is nie-triviaal, want
mense het komplekse en meestal onvoorspelbare bewegings, en daar is sensor-ruis en metingonsekerhede
teenwoordig. Ons neem tradisionele voorwerp-opsporing metodes in ag
en besluit om termiese data te gebruik vir die opsporingstap. Hierdie keuse word ondersteun
deur die robuustheid van termiese data in vergelyking met kleur data in ongunstige
lig-kondisies en in sekuriteitstoepassings. Die nadeel van die gebruik van termiese data is
dat ons kleur inligting verloor, aangesien die sensor die hitte vrystelling van die liggaam interpreteer,
eerder as sigbare lig. Ons inkorporeer ’n kleur-sensor wat gebruik word om die
kenmerke van elke gevolgde voorwerp te bou. Hierdie kenmerke word gebruik om te help
om ooreenkomste tussen opgespoorde voorwerpe te bepaal met die verloop van tyd.
’n Probleem met die tradisionele voorwerp-opsporing algoritmes, wat tipies bestaan uit agtergrond-
aftrekking gevolg deur komponent-etikettering, is dat dit kan voorkom asof voorwerpe
verdeel of saamsmelt, of verdwyn in ’n paar rame. Ons besluit om ‘flous’-voorwerpe
by te voeg in ’n poging om hierdie probleme teen te werk. Ons weerhou om enige konkrete
besluite oor opgespoorde voorwerpe se ooreenkomste met die verloop van tyd te maak, en
laat die stelsel eerder toe om te besluit watter ooreenkomste meer waarskynlik is. Verder
vind ons dat die tradisionele Markoviaanse benadering vir die bepaling van ooreenkomste
tussen opgespoorde voorwerpe in die huidige tydstap en die vorige een kan lei tot ongewenste
gedrag. Ons oorweeg eerder ’n reeks van tydstappe, of ’n venster, en optimeer die
volg van voorwerpe oor hulle. Ons bou ’n saamgestelde ooreenstemmingsmodel en weeg
elke ooreenstemming volgens die ooreenkoms (korrelasie) tussen voorwerpe se kenmerke.
Alle moontlike spore word deur hierdie model bepaal en ’n waarskynlikheid word bereken
vir elkeen. Die spore met die beste tellings word gebruik om al die opsporings te nommeer,
en hierdie etikettering word gebruik as meting-inset vir ’n volgingsfilter.
Ons vind dat die venster-volg benadering belowend vaar selfs al is die invoerdata in ons
toetse van swak gehalte en ruiserig. Die stelsel sukkel met besige tonele en wanneer baie
flous-voorwerpe teenwoordig is. Tog dien ons bevindinge as ’n bewys van konsep en ons
bespreek ’n paar verbeterings wat in die toekoms oorweeg kan word.
|
69 |
Applying the MDCT to image compressionMuller, Rikus 03 1900 (has links)
Thesis (DSc (Mathematical Sciences. Applied Mathematics))--University of Stellenbosch, 2009. / The replacement of the standard discrete cosine transform (DCT) of JPEG with the
windowed modifed DCT (MDCT) is investigated to determine whether improvements
in numerical quality can be achieved. To this end, we employ an existing algorithm
for optimal quantisation, for which we also propose improvements. This involves the
modelling and prediction of quantisation tables to initialise the algorithm, a strategy that
is also thoroughly tested. Furthermore, the effects of various window functions on the
coding results are investigated, and we find that improved quality can indeed be achieved
by modifying JPEG in this fashion.
|
70 |
Analysis of the rolling motion of loaded hoopsTheron, Willem F.D. 03 1900 (has links)
Thesis (PhD (Mathematical Sciences. Applied Mathematics))--University of Stellenbosch, 2008. / This dissertation contains a detailed report on the results of a research project on the behaviour
of a dynamical system consisting of a hoop to which a heavy particle is fixed at the rim. This
loaded hoop rolls on a rough surface while remaining in the vertical plane. The motion of
the hoop consists of various, possibly alternating, phases consisting of rolling without slipping,
spinning or skidding motion and in some cases ends by hopping off the surface.
A general mathematical model is developed, consisting of a system of second order ordinary
differential equations, one for each of the three degrees of freedom. Analytic solutions are
obtained in some cases; otherwise numerical solutions are used.
Three specific applications of the general model are dealt with.
In the first application the problem of massless hoops is investigated. The main emphasis is on
the somewhat controversial question of what happens after the normal reaction becomes zero
in a position where the particle is still moving downwards. A new result shows that the hoop
can continue to move horizontally in a motion defined as skimming.
The second application deals with rigid hoops and a large number of detailed results are presented.
Classification schemes for the different types of behaviour are introduced and summarised
in the form of phase diagrams. Some emphasis is placed on the rather amazing number
of different patterns of motion that can be obtained by varying the parameters.
In the third application two elastic models are analysed, with the primary purpose of explaining
one aspect of the reported behaviour of experimental hoops, namely hopping while the particle
is moving downwards.
A chapter on experimental models rounds off the project.
|
Page generated in 0.098 seconds