• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 96
  • Tagged with
  • 206
  • 206
  • 206
  • 31
  • 27
  • 25
  • 25
  • 22
  • 21
  • 21
  • 20
  • 19
  • 19
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Modelling of turbulent cross-flow microfiltration of particulate suspensions.

Pillay, V. L. January 1991 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, Durban, 1991.
172

The kinetics of steam gasification of South African coals.

Riley, Rodger Keith. January 1990 (has links)
The prime objective of a current research project at the University of Natal is to develop a novel autothermal fluidised bed coal gasifier which is capable of efficiently producing synthesis quality gas (rich in hydrogen and carbon monoxide) from discard of duff coal resources using air and steam as the reactant gases. The development of this gasifier was initially motivated to utilise the ever increasing supply of discard coal in South Africa which represents a significant potential source of energy and currently poses severe environmental pollution hazards caused by spontaneous combustion and wind erosion of the discard coal dumps. Recently, however, the gasifier has been considered for the conversion of more general coal resources in an Integrated Coal Gasification Combined Cycle process (IGCC) for the production of electricity. The knowledge of the kinetics of steam gasification of local coal resources is of vital importance to the design of this gasifier. However, no such kinetic data are available of which the author is aware. This thesis presents the following contributions to the overall knowledge of the gasifier (a) The development of a micro reactor to measure the rate of reaction of the steam gasification of coal-char at temperatures of up to l000oC and pressures up to 5 bar absolute; (b) Kinetic studies using the microreactor on the steam gasification of coal-chars derived from Bosjesspruit and Transvaal Navigation coal samples. The following principal results were obtained with Bosjesspruit coal-char : The rate of steam-char gasification is very sensitive to variations in the temperature of reaction in the range 840°C to 920°C. Neither the rate of steam-char gasification nor the product gas composition are affected by the steam partial pressure in the range 1.8 to 4.8 bar absolute; The concentrations of the H2 and CH4 components of the product gas stream rapidly approached their respective equilibrium compositions, whereas the concentrations of CO and CO2 gradually approach their respective equilibrium compositions during gasification at a rate which is typical of the stoichiometry of the Boudouard reaction. The average product gas composition is independent of the temperature of reaction in the range 840°C to 920°C and is approximately 49% H2, 32% CO, 17% CO2 and 2% CH4 on a molar basis; The steam gasification kinetic data are well described by a fundamental Arrhenius-type volumetric reaction model at (c) temperatures of up to 920°C. The value of the activation energy for the reaction is 146 kJ/gmol, which indicates that the gasification kinetics are controlled by the rates of the chemical reactions (ie. C + H2O = CO + H2 and C + CO2 = 2CO) at temperatures up to 920o C; There are no major differences between the kinetics measured for Bosjesspruit coal-char and those reported in the literature for foreign coal-chars. The experimental results obtained for the steam gasification of char derived from Transvaal Navigation coal show that the concentrations of both the Hz and the CH4 in the product gas stream rapidly attain their respective equilibrium values and remain approximately constant throughout gasification, whereas the concentrations of CO and CO2 gradually approach their respective equilibrium values during the course of gasification and almost attain equilibrium concentrations as the conversion of carbon nears completion. The rate of steam gasification of this char is therefore also controlled by the rate of the Boudouard reaction. The mathematical development of a steady-state, one-dimensional compartment model of the gasifier. The model is also presented in the form of a Fortran 77 computer program which is designed to run on a personal computer. The program is capable of simultaneously solving the overall material and energy balances of the gasifier to a tolerance of l% within 15 minutes when using a microprocessor which operates at 10 Mhz. (d) The gasifier simulation program is currently being used in the design of a pilot scale gasifier which is intended to demonstrate the capability of the process on a continous basis of operation. (e) Experimentation on the air-steam gasification of Bosjesspruit coal using a mini-pilot scale gasifier. These experiments have successfully demonstrated the feasibility of the production of a gas stream which is rich in hydrogen and carbon monoxide. The composition of the product gas stream compares well with the predictions of the simulation model of the gasifier. / Thesis (Ph.D.)-University of Natal, Durban, 1990.
173

Performance studies of the tubular filter press.

Rencken, Gunter Eduard. January 1992 (has links)
The tubular filter press is a novel tubular configured filter press for the filtration or dewatering of sludges. The unique features of the filter press are: (i) during the cake deposition cycle, cake is deposited on the internal walls of a self-supporting array of horizontal collapsible porous fabric tubes; (ii) during the cake removal cycle, cake is dislodged from the tube walls by means of a roller cleaning device and the dislodged flakes of cake are hydraulically transported out of the tubes by the feed sludge which is simultaneously re-circulated at a high flow rate through the tubes. The two main problems experienced on a prototype tubular filter press, which was erected at a water treatment plant to dewater the sludge from the clarifier underflow, were: (i) tube blockage problems during the filtration cycle; (ii) low cake recoveries (high cake losses) during the cake removal cycle. The following objectives which were defined for this study, were regarded as fundamental prerequisites for any solution of the two main problems: (i) to develop a predictive dead-end internal cylindrical model for compressible cake filtration inside a porous tube; (ii) to investigate the cake losses during the cake removal cycle of the tubular filter press; (iii) to develop a predictive unsteady-state internal cylindrical cross-flow microfiltration model for a non-Newtonian sludge which, when filtered, produces a very compressible cake. (An alternative to dead-end filtration during the filtration cycle of a tubular filter press is low axial velocity cross-flow filtration). On the basis of the objectives the study was divided into three separate investigations. To date no one has developed a model which incorporates the cylindrical configuration of the filter medium for dead-end compressible cake filtration inside a porous tube. The most comprehensive model for dead-end external cylindrical compressible cake filtration is that of Tiller and Yeh (1985). This model was adapted for internal cylindrical compressible cake filtration. In essence the model by Tiller and Yeh (1985) requires the solution of a system of two ordinary differential equations in order to calculate the radial variation of solids compressive and liquid pressures in a compressible filter cake deposited externally on a cylindrical surface. The relevant equations were derived for internal cylindrical compressible cake filtration and it was found that one of the differential equations changes from: dPl/dr = H1/2nrK (external cylindrical) to dPl/dr = H12nrK (internal cylindrical). The other differential equation remains unaltered for internal cylindrical compressible cake filtration. A batch of waterworks clarifier sludge from the prototype tubular filter press was used for experiments to evaluate the performance of the internal cylindrical filtration model. The cake produced by the filtration of this sludge had to be characterized for the model. Compression-permeability data were obtained over a wide solids compressive pressure range. A Compression-Permeability (C-P) cell was used for high solids compressive pressures (10 kPa<_ ps<_400 kPa) and settling tests were used for low solids compressive pressures (0,0065 Pa <_ ps < 525,6 Pa). The cake was found to be very compressible (compressibility coefficient = 0,989). Empirical equations of the form, K' = Fps - b and (1 - E) = B pbs , were derived from the C-P cell and settling tests to relate permeability and porosity to solids compressive pressure. The equations were slightly different to those proposed by Tiller and Cooper (1962). The predictions by the internal cylindrical compressible cake filtration model were compared to the results of constant pressure internal cylindrical filtration experiments, at filtration pressures of 100 kPa, 200 kPa and 300 kPa, using the waterworks clarifier sludge. The internal diameter of the filter tube which was used for the experiments was 26,25 mm. The model accurately described the results of the filtration experiments in terms of volume of filtrate, average cake dry solids concentration, filtrate flux and internal cake diameter. The differences between external cylindrical, internal cylindrical and planar compressible cake filtration were highlighted. Since the tubular filter press is a novel process, the cake losses during the cake removal cycle have not been investigated before. An investigation was therefore conducted into the cake losses which occur during the cake removal cycle. The same batch of clarifier sludge was also used for the investigation of cake losses during the cake removal cycle at filtration pressures of 100 kPa and 300 kPa. It was found that significant cake losses occurred due to: (i) the shear of the cleaning fluid prior to the action of the rollers (losses varied between 10 % to 20 % of the deposited cake dry solids); (ii) the combined action of the rollers when dislodging the cake and the hydraulic conveyance of the dislodged flakes of cake (losses varied between 30 % to 40 % of deposited cake dry solids). A new shear model, which was developed, accurately predicted the cake losses and increase in internal cake diameter and average cake dry solids concentration, which occurred due to the shear of the cleaning fluid. For the shear model the sludge (cake) rheology was determined using a capillary-tube viscometer. It was found that the sludges exhibited Bingham plastic behaviour in the solids concentration range: 3,58 % m/m <_Cs <_16,71 % m/m. The cake losses due to the action of the rollers and hydraulic conveyance of the dislodged flakesof cake decreased markedly as filtration pressure and filtration time were increased, while a decrease in path length for hydraulic conveyance of dislodged cake flakes resulted in a mild decrease in these cake losses. A literature review revealed that to date only one mathematical model (Pearson and Sherwood, 1988) is available for the unsteady-state cross-flow microfiltration of a non-Newtonian sludge which, when filtered, produces a compressible cake. A new unsteady-state internal cylindrical axial convection shear model (for laminar flow of the feed sludge) was developed for cross-flow microfiltration of a Bingham plastic sludge which, when filtered, produces a very compressible cake. Similar to the approach by Pearson and Sherwood (1988) this model is a combination of the dead-end internal cylindrical compressible cake filtration model and the "cleaning fluid" shear model. The major difference between the new model and the model by Pearson and Sherwood (1988) is that unlike the convection-diffusion model of Pearson and Sherwood (1988), diffusive and shear induced diffusive back-mixing of particles were assumed to be negligible. The existence of a shear plane within the cake forms the basis of the model. Those cake layers with a yield stress less than the shear stress exerted by the flowing feed sludge at the inner cake wall are convected along the shear plane. It was assumed that the axial convection of the solids in the moving cake layer along the shear plane is the sole mechanism for removal of solids deposited at the cake surface. The model was compared to the results of cross-flow microfiltration experiments at one filtration pressure (300 kPa) and cross-flow flow rates of 0,84 l / min; 1,58 l / min; 2,43 l / min and 4,44 l /min. The model accurately described the variation of filtrate flux, internal cake diameter and average cake dry solids concentration during the unsteady-state time period. The model, however, had to be "extended" by incorporating empirical equations for changes in permeability and porosity (due to further cake compaction) to obtain a good fit between the model and experimental results during the pseudo steady-state time period. The results of all three investigations provide a greater understanding of the cake deposition process (during both dead-end and cross-flow filtration modes) and the cake removal process for the tubular filter press. This should assist in finding solutions to the two main problems which were experienced on the prototype tubular filter press. / Thesis (Ph.D.)-University of Natal, Durban, 1992.
174

A Study of boiling parameters under conditions of laminar non-Newtonian flow with particular reference to massecuite boiling.

Rouillard, Ernest Edouard Andre. January 1985 (has links)
Crystallization is done in the sugar industry using natural circulation vacuum evaporative crystallizers known as vacuum pans. the fluid which is known as massecuite consists of a suspension of crystals in concentrated molasses. It is highly viscous and slightly non-Newtonian, and laminar conditions prevail in the apparatus. Research on forced convection boiling heat transfer, pressure drop and vapour holdup has been done mostly in turbulent flow under pressures higher than atmospheric, but no studies have been made when boiling viscous fluids under vacuum. This thesis describes a series of experiments which were undertaken with the following objectives: (a) to determine the influence of the pertinent variables on heat transfer, friction losses and vapour holdup while boiling under laminar conditions (b) to produce a method for the calculation of the evaporation and circulation rates in vacuum pans, as this would make possible the optimization of this type of equipment. The apparatus used consisted of a single tube steam heated forced circulation evaporator. The void fraction, pressure and centerline temperature were measured along the tube. The fluids used were syrup, molasses and massecuite covering a thousandfold change in viscosity. The tests were conducted under different conditions of vacuum and steam pressures with varying tube inlet velocities. The experimental results show that the boiling heat transfer coefficient can be correlated as a function of the two phase Reynolds number and dimensionless density ratio and that it is inversely proportional to the tube length to the power of one third. The pressure drop can be estimated using the equation of Oliver and Wright (1964) for bubbly flow. Equations are proposed for calculating the void fraction in the highly subcooled region and point of bubble departure. These equations form the basis of a computer program which by a stepwise and iterative method simulates the boiling process along the tube. Measurements taken on a natural circulation pan with tubes of different length show that this method predicts the effect of the tube length with reasonable accuracy. The limitations of this study are that the experiments were done with a single diameter tube so that the effect of diameter has not been established with certainty. Only sugar products were used in the experiments, and caution is necessary if this method is applied to other fluids. / Thesis (Ph.D.)-University of Natal, Durban, 1985.
175

Monte Carlo molecular simulation of binary fluid-phase equilibrium using heterogeneous mixing parameters.

Moodley, Suren. January 2012 (has links)
Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.
176

Dispersion in slowly moving fluids.

Te Riele, Wolter A. M. January 1970 (has links)
This work is concerned with the characterization of slowly moving fluids and was carried out on the flow of water through a narrow sedimentation tank. Dispersion in the type of flow structure involved is caused mainly by the presence of large eddies and, due to the fact that shear stresses are small, these eddies persist for a considerable period of time. Two flow models are presented : The first model assumes the X- Y- velocity component pair to form a discrete state Markov process in time and dispersion equations for the mean concentration at a point, the variance as well as concentration cross correlations are generated. In the second model the velocity fluctuation components are assumed to be independent, time-stationary Markov processes with normal probability density functions. The stochastic differential equation describing dispersion of tracer is formulated with and without the effect of molecular diffusion and solutions to both cases are presented. Comparison of the model with experimental data obtained from tracer and anemometer measurements show that the model is capable of describing mean dispersion in a relatively small region of the tank and that the tracer experiments were insensitive to molecular diffusion. / Thesis (Ph.D.)-University of Natal, Durban, 1970.
177

A real time fluorescent particle counter for atmospheric dispersion studies.

Davey, William Lewis Errol. January 1985 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, Durban, 1985.
178

Production of activated carbon from South African sugar-cane bagasse.

Devnarain, Prathisha Baruth. January 2003 (has links)
The South African sugar industry generates excessive amounts of sugar cane bagasse (~ 25 wt% of feed) as a byproduct during the extraction of sugar juice from cane. Although bagasse is extensively consumed in various processes, a substantial amount remains unexploited. The industry's core business is the production of refined sugar which involves among others, a step of decolourising raw sugar liquor. Activated carbons are well known adsorbents and their excellent decolourisation capabilities have been established since 1800 in the sugar industry. The possibility of making suitable in-house activated carbons from sugar cane bagasse to aid the decolourisation process of raw sugar liquor is of interest to the growing South African sugar industry. The purposes of this research study were to develop an understanding on the manufacture of activated carbons from sugar cane bagasse, produce suitable activated carbons on a laboratory scale, characterize them and subsequently determine their sugar decolourisation capabilities under simulated conditions. The application of the two-step physical method of processing was found to be the most effective and feasible route to produce activated carbons from sugar cane bagasse for the purposes of decolorizing unrefined sugar. A semi-batch process was developed whereby compressed sugar cane bagasse was pyrolysed under a nitrogen atmosphere at a heating rate of 10 °C/min to the final pyrolysis temperature for a desired hold time resulting in bagasse chars with a rudimentary pore structure. These bagasse chars were subsequently subjected to partial and controlled gasification with a steam/nitrogen mixture at higher temperatures to produce the final activated carbon product. Both pyrolysis and activation were carried out in a pyrolysis furnace that was modified to represent a fixed bed reactor system. The process was designed such that it included a steam supply and a gas cleaning system. Feasible processing conditions were established by varymg the temperature, hold time and partial pressure of steam in the pyrolysis furnace. The bagasse chars and final activated carbons were characterized with respect to surface area, pore volume, pore size distribution, methylene blue number, iodine number and molasses number. The optimum pyrolysis conditions were found to be at heating rate of 10°C/min to the final pyrolysis temperature of 680 °C for a hold time of 1 hour, which gave rise to microporous carbons. Increasing the steam partial pressure and activation temperature during activation of bagasse chars resulted in the gasification reaction proceeding at a much faster rate leading to well developed mesoporous activated carbons having high adsorption capacity for large colour bodies present in molasses and sugar liquor. This was achieved by activating bagasse chars at a temperature of 900°C for 2 hours with a steam / nitrogen mixture of 1:0.6 which resulted in 50% bum-off being reached. Excellent powder and granular activated carbons were produced from sugar cane bagasse fibres by the established process with the latter being mixed with refined sugar prior to pyrolysis and activating for half an hour extra. A typical final activated carbon produced in this research possessed a BET surface area of 995 m2/g, pore volume of 0.82 crrr'zg, iodine number of 994 mg/g, molasses number of 700 and methylene blue number of 256 mg/g. High ash content in the bagasse raw material tends to decrease the surface area and pore volume for adsorption of the final activated carbon. Both granular and low ash bagasse activated carbons possess high adsorption capacity to remove large colour bodies from molasses and brown liquor solutions and compare well with commercial Norit N2 carbon . Approximately 80% colour removal was achieved using 0.5 g carboni 100g brown liquor. The bagasse activated carbons were stable in acidic and basic brown liquor solution and maintained their high decolourisation potential. The ability of bagasse activated to replace commercial activated carbons has been proven in this study. The option of producing both granular and powder activated carbons provide flexibility of the sugar industry to choose between batch and continuous adsorption systems during sugar decolourisation. This research has established that the fact that excellent sugar decolourising activated carbons can be produced from South African sugar cane bagasse fibres. However, more research needs to be carried out in order for the sugar industry to take this project to the commercial stage and it is suggested that a pilot study and an economic study be carried out. / Thesis (M.Sc.)-University of Natal, Durban, 2003.
179

CFD modelling of a novel clarifier design for use in sugar cane juice clarification.

Govender, Thishen. January 2008 (has links)
The purpose of clarification in the sugar industry is to remove soluble, insoluble and colloidal matter from cane juice. Efficient clarification is required to produce high quality sugar and to prevent entrainment of solids in downstream equipment. The objective of this study is to produce a Computational Fluid Dynamics (CFD) model of the Magra Ultrasep clarifier. This was accomplished by: • Modelling the hydrodynamics of a laboratory scale clarifier In the Fluent CFD program. • Incorporating the flocculation process into the CFD model. • Performing experiments on a pilot scale clarifier to obtain parameter values for the flocculation model. The hydrodynamic model of the clarifier showed the presence of a recirculation zone above the baffle plate. Particle injections using Fluent's discrete phase modelling option determined that particles within the size range of IOOj..Lm to 4mm would circulate in this region, forming the bed of floc particles required for the Magra Ultrasep to work efficiently. The flocculation process in Fluent was represented using three different solid phases of different particle sizes. Small and medium sized particles were allowed to combine to form larger particles by changing the volume fractions according to three rate equations. A fibre glass laboratory scale model was set up at Maidstone Sugar Mill and fed the same sugar cane juice that enters the Rapi-Dorr clarifiers. The experimental results were then fed into a simplified flocculation model in MATLAB. An overall rate constant (k) of 5kg.m-3.s-) for the flocculation kinetic equation satisfied the experimental result. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2008.
180

Vapour-liquid equilibrium measurements at moderate pressures using a semi-automatic glass recirculating still.

Lilwanth, Hitesh. 15 September 2014 (has links)
Vapour-liquid equilibrium (VLE) data of high accuracy and reliability is essential in the development and optimization of separation and chemical processes. This study focuses on satisfying the growing demand for precise VLE data at low to moderate pressures, by development of a computer-aided dynamic glass still which is semi-automated. The modified dynamic glass still of Joseph et al. (2001) was employed to achieve precise measurement of phase equilibrium data for a pressure range of 0 to 500 kPa. The study involved the assembling and commissioning of a new moderate pressure dynamic still and various peripheral apparati. The digital measurement and control systems were developed in the object-oriented graphical programming language LabVIEW. The digital proportional controller with integral action developed by Eitelberg (2009) was adapted for the control of pressure and temperature. Pressure and temperature measurements were obtained by using a WIKA TXM pressure transducer and Pt-100 temperature sensor respectively. The calculated combined standard uncertainties in pressure measurements were ±0.005 kPa, ±0.013kPa and ±0.15kPa for the 0-10 kPa, 10-100 kPa and 100-500 kPa pressure ranges respectively. A combined standard uncertainty in temperature of ±0.02 K was calculated. The published data of Joseph et al., (2001) and Gmehling et al,. (1995) for the cyclohexane (1) and ethanol (2) system at 40kPa and 1-hexene (1) + N-methyl pyrrolidone-2 (NMP) (2) system at 363.15 K respectively served as test systems. NMP is regarded as one of the most commonly used solvents in the chemical industry due to its unique properties such as low volatility, thermal and chemical stability. As a result the isothermal measurement of 1-hexene (1) + N-methyl pyrrolidone-2 (NMP) (2) system were conducted at 373.15 K constituting new VLE data. A further system comprising 1-propanol (1) and 2-butanol (2) was also measured at an isothermal temperature of 393.15 K. The measured data were regressed using the combined and direct methods. The equations of state of Peng-Robinson (1976) and Soave-Redlich-Kwong (1972) combined with the mixing rules of Wong-Sandler (1992) in conjunction with a Gibbs excess energy model was utilized for the direct method. The activity coefficient models namely Wilson (1964) and NRTL (Renon and Prausnitz, 1968) were chosen to describe the liquid non-idealities while the vapour phase non-ideality was described with the virial equation of state with the Hayden and O’ Connell (1975) correlation. Thermodynamic consistency of the measured data was confirmed using the point test of Van Ness et al. (1973) and the direct test of Van Ness (1995). / M.Sc.Eng. University of KwaZulu-Natal, Durban 2014.

Page generated in 0.0762 seconds