• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 240
  • 217
  • 1
  • 1
  • 1
  • Tagged with
  • 474
  • 474
  • 474
  • 337
  • 151
  • 83
  • 75
  • 69
  • 68
  • 53
  • 44
  • 43
  • 43
  • 43
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Obstacle avoidance and trajectory optimisation for a power line inspection robot.

Rowell, Timothy. January 2012 (has links)
This dissertation presents the research, development and application of trajectory creation, obstacle avoidance and trajectory optimisation methods for an existing serial manipulator power line inspection robot (PLIR). The obstacle avoidance implementation allows the robot to navigate around an obstacle obstructing its navigation along the line. The algorithm generated end effector trajectory waypoints autonomously based on bounding box obstacle descriptions in Cartesian space, and connected them with a fifth order basis-spline end effector trajectory command. The trajectories were created taking into account the dynamic torque and velocity constraints of the robot while ignoring non-linearities. Performance was inspected and evaluated in a simulated workspace environment. The trajectory optimisation was designed to maximise the robot’s operating range, with constraints on the battery power supply, by minimising charge consumed during obstacle avoidance trajectories. The temporal components of the basis-spline trajectories were optimised by minimising a timeenergy type of cost function subject to the dynamic constraints of the robot. Cost function analyses are presented for a simple frictionless robot model based on the recursive Newton-Euler method, and for a more realistic model including viscous, Coulomb and static friction as well as gearbox backlash. It is shown that the Nelder-Mead simplex method was appropriate for optimisation. For representative trajectories that were studied, the optimiser was capable of finding global minima with satisfactory speed and accuracy in simulation. The validity of trajectory optimisation with regard to the cost function behaviour was confirmed. This was based on experiments carried out on the robot hardware in the laboratory, examining the predicted and actual actuator current profiles. The engineering design and implementation of hardware and software for the base station and on-board system is presented, together with the layout of the PLIR’s control system and PID (proportional-integral-derivative) controller design. Trajectory commands are sent from the base station to the robot via Wi-Fi for execution. Furthermore, live video feed from the robot can be sent to the ground station computer. Furthermore, high voltage testing of the PLIR showed that the engineering design of the robot and communication platform is robust. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.
242

Performance evaluation of WiMax for rural backhaul.

18 October 2010 (has links)
Technologies such as WiFi and WiMAX, can be a powerful driving force for increasing rural / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2007.
243

Determination of millimetric signal attenuation due to rain using rain rate and raindrop size distribution models for Southern Africa.

Malinga, Senzo Jerome. 15 September 2014 (has links)
The advantages offered by Super High Frequency (SHF) and Extremely High Frequency (EHF) bands such as large bandwidth, small antenna size, and easy installation or deployment have motivated the interest of researchers to study those factors that prevent optimum utilization of these bands. Under precipitation conditions, factors such as clouds, hail, fog, snow, ice crystals and rain degrade link performance. Rain fade, however, remains the dominant factor in the signal loss or signal fading over satellite and terrestrial links especially in the tropical and sub-tropical regions within which South Africa falls. At millimetre-wave frequencies the signal wavelength approaches the size of the raindrops, adversely impacting on radio links through signal scattering and absorption. In this work factors that may hinder the effective use of the super high frequency and extremely high frequency bands in the Southern African region are investigated. Rainfall constitutes the most serious impairment to short wavelength signal propagation in the region under study. In order to quantify the degree of impairment that may arise as a result of signal propagation through rain, the raindrops scattering amplitude functions were calculated by assuming the falling raindrops to be oblate spheroidal in shape. A comparison is made between the performance of the models that assume raindrops to be oblate spheroidal and those that assume them to be spherical. Raindrops sizes are measured using the Joss-Waldvogel RD-80 Distrometer. The study then proposes various expressions for models of raindrops size distributions for four types of rainfall in the Southern Africa region. Rainfall rates in the provinces in South Africa are measured and the result of the cumulative distribution of the rainfall rates is presented. Using the information obtained from the above, an extensive calculation of specific attenuation and phase shift in the region of Southern Africa is carried out. The results obtained are compared with the ITU-R and those obtained from earlier campaigns in the West African sub region. Finally, this work also attempts to determine and characterize the scattering process and micro-physical properties of raindrops for sub-tropical regions like South Africa. Data collected through a raindrop size measurement campaign in Durban is used to compare and validate the developed models. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2014.
244

Modeling of raindrop size distribution and critical diameters for rainfall attenuation over microwave links in Southern Africa.

Adetan, Oluwumi. 15 September 2014 (has links)
The inability of service providers to constantly meet the design target of 99.99 % availability of the line-of-sight (LOS) microwave links has caused concern among both the operators and consumers. The non-availability of the links is predominantly due to propagation impairments along the propagation link. These propagation effects include cloud, snow, fog, gas attenuation, rain and atmospheric scintillation. Various studies have shown high vulnerability of radio communication systems operating at microwave (3-30 GHz) and millimeter wave (30-300 GHz) to rainfall attenuation especially in the tropical regions characterized by heavy rainfall and relatively large rain drops when compared to the temperate regions. In order to understand the effects of attenuation due to rain on communication systems in any locality (region), a good knowledge of the raindrop size distribution (DSD) and the rainfall rate estimates is necessary for accurate prediction and estimation of the rainfall attenuation. For this study, experimental raindrop size measurements gathered over a period of three years, using the Joss-Waldvogel RD-80 disdrometer installed at the roof top of the Electrical, Electronic and Computer Engineering building, University of Kwa-Zulu Natal, Durban, a subtropical location in South Africa, is analysed. Disdrometer measurements, sampled at one-minute rate over a period of nine months from Butare, an equatorial site in Rwanda, is also analysed for the purpose of comparison. The estimated R0.01 values for Durban and Butare are employed for the purpose of analysis. Based on the statistical analysis of the measured data samples, DSD parameters are proposed from the negative exponential, modified gamma, Weibull and the lognormal models. The DSD models are compared to models from other countries within and outside the region. The Mie scattering approximation at temperature of 20oC for spherical raindrop shape is adopted for the estimation of the scattering functions. The study further investigates the influence of critical raindrop diameters on the specific rain attenuation for the annual, seasonal and various rainfall regimes in southern Africa. This is achieved analytically by integrating the total rainfall attenuation over all the raindrop sizes and observing the differential change in the attenuation over a given range of drop size diameters. The peak diameter at which the specific rainfall attenuation is maxima is determined for different rainfall regimes. Finally, the cross-polarisation discrimination (XPD) due to rain over Durban is computed at two elevation angles. The results of this study will be helpful for the proper design and allocation of adequate fade margins to achieve the expected quality of service (QoS) in a radio communication system operating in the Southern Africa region. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2014.
245

Power line communication channel modelling.

Zwane, Fulatsa. 08 October 2014 (has links)
M.Sc.Eng. University of KwaZulu-Natal, Durban 2014.
246

Frequency synchronization in multiuser OFDM-IDMA systems.

Balogun, Muyiwa Blessing. 18 July 2014 (has links)
Various multiuser schemes have been proposed to efficiently utilize the available bandwidth while ensuring an acceptable service delivery and flexibility. The multicarrier CDMA became an attractive solution to the major challenges confronting the wireless communication system. However, the scheme is plagued with multiple access interference (MAI), which causes conspicuous performance deterioration at the receiver. A low-complexity multiuser scheme called the Interleave Division Multiple Access (IDMA) was proposed recently as a capable solution to the drawback in the multicarrier CDMA scheme. A combined scheme of OFDM-IDMA was later introduced to enhance the performance of the earlier proposed IDMA scheme. The multicarrier IDMA scheme therefore combats inter-symbol interference (ISI) and MAI effectively over multipath with low complexity while ensuring a better cellular performance, high diversity order, and spectral efficiency. Major studies on the OFDM-IDMA scheme emphasis only on the implementation of the scheme in a perfect scenario, where there are no synchronization errors in the system. Like other multicarrier schemes, the OFDM-IDMA scheme however suffers from carrier frequency offset (CFO) errors, which is inherent in the OFDM technique. This research work therefore examines, and analyzes the effect of synchronization errors on the performance of the new OFDM-based hybrid scheme called the OFDM-IDMA. The design of the OFDM-IDMA system developed is such that the cyclic prefix duration of the OFDM component is longer than the maximum channel delay spread of the multipath channel model used. This effectively eliminates ISI as well as timing offsets in the system. Since much work has not been done hitherto to address the deteriorating effect of synchronization errors on the OFDM-IDMA system, this research work therefore focuses on the more challenging issue of carrier frequency synchronization at the uplink. A linear MMSE-based synchronization algorithm is proposed and implemented. The proposed algorithm is a non-data aided method that focuses on the mitigation of the ICI induced by the residual CFOs due to concurrent users in the multicarrier system. However, to obtain a better and improved system performance, the Kernel Least Mean Square (KLMS) algorithm and the normalized KLMS are proposed, implemented, and effectively adapted to combat the degrading influence of carrier frequency offset errors on the OFDM-IDMA scheme. The KLMS synchronization algorithm, which involves the execution of the conventional Least Mean Square (LMS) algorithm in the kernel space, utilizes the modulated input signal in the implementation of the kernel function, thereby enhancing the efficacy of the algorithm and the overall output of the multicarrier system. The algorithms are applied in a Rayleigh fading multipath channel with varying mobile speed to verify their effectiveness and to clearly demonstrate their influence on the performance of the system in a practical scenario. Also, the implemented algorithms are compared to ascertain which of these algorithms offers a better and more efficient system performance. Computer simulations of the bit error performance of the algorithms are presented to verify their respective influence on the overall output of the multicarrier system. Simulation results of the algorithms in both slow fading and fast fading multipath scenarios are documented as well. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.
247

The hybrid list decoding and Chase-like algorithm of Reed-Solomon codes.

Jin, Wei. January 2005 (has links)
Reed-Solomon (RS) codes are powerful error-correcting codes that can be found in a wide variety of digital communications and digital data-storage systems. Classical hard decoder of RS code can correct t = (dmin -1) /2 errors where dmin = (n - k+ 1) is the minimum distance of the codeword, n is the length of codeword and k is the dimension of codeword. Maximum likelihood decoding (MLD) performs better than the classical decoding and therefore how to approach the performance of the MLD with less complexity is a subject which has been researched extensively. Applying the bit reliability obtained from channel to the conventional decoding algorithm is always an efficient technique to approach the performance of MLD, although the exponential increase of complexity is always concomitant. It is definite that more enhancement of performance can be achieved if we apply the bit reliability to enhanced algebraic decoding algorithm that is more powerful than conventional decoding algorithm. In 1997 Madhu Sudan, building on previous work of Welch-Berlekamp, and others, discovered a polynomial-time algorithm for decoding low-rate Reed- Solomon codes beyond the classical error-correcting bound t = (dmin -1) /2. Two years later Guruswami and Sudan published a significantly improved version of Sudan's algorithm (GS), but these papers did not focus on devising practical implementation. The other authors, Kotter, Roth and Ruckenstein, were able to find realizations for the key steps in the GS algorithm, thus making the GS algorithm a practical instrument in transmission systems. The Gross list algorithm, which is a simplified one with less decoding complexity realized by a reencoding scheme, is also taken into account in this dissertation. The fundamental idea of the GS algorithm is to take advantage of an interpolation step to get an interpolation polynomial produced by support symbols, received symbols and their corresponding multiplicities. After that the GS algorithm implements a factorization step to find the roots of the interpolation polynomial. After comparing the reliability of these codewords which are from the output of factorization, the GS algorithm outputs the most likely one. The support set, received set and multiplicity set are created by Koetter Vardy (KV) front end algorithm. In the GS list decoding algorithm, the number of errors that can be corrected increases to tcs = n - 1 - lJ (k - 1) n J. It is easy to show that the GS list decoding algorithm is capable of correcting more errors than a conventional decoding algorithm. In this dissertation, we present two hybrid list decoding and Chase-like algorithms. We apply the Chase algorithms to the KV soft-decision front end. Consequently, we are able to provide a more reliable input to the KV list algorithm. In the application of Chase-like algorithm, we take two conditions into consideration, so that the floor cannot occur and more coding gains are possible. With an increase of the bits that are chosen by the Chase algorithm, the complexity of the hybrid algorithm increases exponentially. To solve this problem an adaptive algorithm is applied to the hybrid algorithm based on the fact that as signal-to-noise ratio (SNR) increases the received bits are more reliable, and not every received sequence needs to create the fixed number of test error patterns by the Chase algorithm. We set a threshold according to the given SNR and utilize it to finally decide which unreliable bits are picked up by Chase algorithm. However, the performance of the adaptive hybrid algorithm at high SNRs decreases as the complexity decreases. It means that the adaptive algorithm is not a sufficient mechanism for eliminating the redundant test error patterns. The performance of the adaptive hybrid algorithm at high SNRs motivates us to find out another way to reduce the complexity without loss of performance. We would consider the two following problems before dealing with the problem on hand. One problem is: can we find a terminative condition to decide which generated candidate codeword is the most likely codeword for received sequence before all candidates of received set are tested? Another one is: can we eliminate the test error patterns that cannot create more likely codewords than the generated codewords? In our final algorithm, an optimality lemma coming from the Kaneko algorithm is applied to solve the first problem and the second problem is solved by a ruling out scheme for the reduced list decoding algorithm. The Gross list algorithm is also applied in our final hybrid algorithm. After the two problems have been solved, the final hybrid algorithm has performance comparable with the hybrid algorithm combined the KV list decoding algorithm and the Chase algorithm but much less complexity at high SNRs. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2005
248

The determining of optimum protocol strategies for half-duplex telemetry communication links

Wolhuter, Riaan 12 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2002. / ENGLISH ABSTRACT: Though not so prominent as the wide band, high speed, mainstream development of data communication networks, cost and particular bandwidth limitations, still ensure extensive and continuing use of low-speed, half-duplex data link equipment. Most of these applications are radio based and aimed towards telemetry systems serving a wide range of utilities. Experience has shown that systems engineering for this type of installation, is seldom undertaken to a satisfactory analytical level. Investigation of published analyses of CSMA protocols in general, has indicated scope of extension of theoretical work to include system parameters for the type of protocol investigated in this dissertation. This dissertation describes the mathematical modeling of such a strategy by utilising a significantly modified, finite source, transition state-matrix approach derived from queueing theory. The contribution of the dissertation is to include system overhead parameters, such as backoff strategy, channel noise, equipment rise times, propagation- and retry delays, into the abovementioned model. The latter provides a relatively straightforward and readily applicable method for system analysis and performance prediction. A further contribution is the presentation of a software emulation with which different strategies could be simulated, allowing for adjustment of all design parameters. The simulation is intended for parallel and confimatory use with the theoretical model. A dual set of tools, theoretical and emulation based, is thus contributed to assist with the system design, performance prediction and protocol selection process. / AFRIKAANSE OPSOMMING: Alhoewel nie so prominent soos die wyeband, hoëspoed, hoofstroom ontwikkeling van datakommunikasie netwerke nie, verseker koste en spesifieke bandwydte beperkings nog die uitgebreide en voortdurende gebruik van laespoed half-dupleks data verbindingstoerusting. Meeste van die toepassings is radio gebaseer en gerig op telemetriestelsels wat deur 'n wye verskeidenheid diensverskaffers benut word. Stelselontwerp vir hierdie tipe installasies word selde op analitiese vlak benader. Ondersoek van gepubliseerde analises van kontensieprotokolle in die algemeen, het ruimte aangetoon vir die uitbreiding van bestaande teoretiese werk om stelselveranderlikes soos van toepassing op die tipe protokol in hierdie proefskrif ondersoek, in te sluit. Hierdie proefskrif beskryf die wiskundige modelering van sodanige strategie, deur gebruik te maak van 'n beduidend veranderde eindige bron, oorgangs-toestandmatriks benadering, afgelei van touteorie. Die bydrae van hierdie proefskrif is die insluiting van oorhoofse stelselveranderlikes, soos herhaal strategie, kanaalruis, toerusting stygtye, herhaal- en voortplantingsvertragings, in bogenoemde model. Laasgenoemde verskaf 'n relatief eenvoudige en maklik toepasbare metode vir stelselanalise en werkverrigtingvoorspelling. 'n Verder bydrae is die daarstelling van 'n sagteware simulasie waarmee verskillende strategieë nageboots kan word. Verstelling van alle ontwerpparameters word ondersteun. Die simulasie is bedoel vir parallelle en bevestigende gebruik tesame met die teoretiese model. 'n Dubbele, teoreties- en simulasie gebaseerde benadering, word dus aangebied vir gebruik by stelselontwerp, gedragsvoorspelling en optimale protokolseleksie.
249

Adaptive techniques with cross-layer design for multimedia transmission.

Vieira, Ricardo. January 2013 (has links)
Wireless communication is a rapidly growing field with many of its aspects undergoing constant enhancement. The use of cross-layer design (CLD) in current technologies has improved system performance in terms of Quality-of-Services (QoS) guarantees. While multimedia transmission is difficult to achieve, CLD is capable of incorporating techniques to achieve multimedia transmission without high complexity. Many systems have incorporated some form of adaptive transmission when using a cross-layer design approach. Various challenges must be overcome when transmitting multimedia traffic; the main challenge being that each traffic type, namely voice; image; and data, have their own transmission QoS; delay; Symbol Error Rate (SER); throughput; and jitter requirements. Recently cross-layer design has been proposed to exchange information between different layers to optimize the overall system performance. Current literature has shown that the application layer and physical layer can be used to adequately transmit multimedia over fading channels. Using Reed-Solomon coding at the application layer and Rate Adaption at the physical layer allows each media type to achieve its QoS requirement whilst being able to transmit the different media within a single packet. The following dissertation therefore strives to improve traffic through-put by introducing an unconventional rate adaption scheme and by using power adaption to achieve Symbol Error Rate (SER) QoS in multimedia transmission. Firstly, we introduce a system which modulates two separate sets of information with different modulation schemes. These two information sets are then concatenated and transmitted across the fading channel. The receiver uses a technique called Blind Detection to detect the modulation schemes used and then demodulates the information sets accordingly. The system uses an application layer that encodes each media type such that their QoS, in terms of SER, is achieved. Simulated results show an increase in spectral efficiency and the system achieves the required Symbol Error Rate constraint at lower Signal to Noise Ratio (SNR) values. The second approach involves adapting the input power to the system rather than adapting the modulation scheme. The two power adaptive schemes that are discussed are Water- Filling and Channel Inversion. Channel Inversion allows the SER requirement to be maintained for low SNR values, which is not possible with Rate Adaption. Furthermore, the system uses an application layer to encode each media type such that their QoS is achieved. Simulated results using this design show an improvement in through-put and the system achieves the SER constraint at lower SNR values. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.
250

Investigating the dynamic performance of generator-pole-slip protection.

Goncalves, Sergio de Freitas. January 1900 (has links)
Generators in an interconnected power system normally remain in synchronism with one another. However, severe faults that lead to loss of heavily loaded generators or large load blocks can cause oscillations in the generator rotor angles that are large enough to result in a pole slip in which a generator, or a group of generators, loses synchronism with the rest of the power system. When a generator pole slips and falls out-of-step with the power system, the generator and system voltages sweep past one another at a slip frequency, producing a pulsating current, which can be greater than a three-phase fault at the generator terminals. An out-of-step generator should therefore be isolated from the power system to prevent damage to the generator, generator transformer and the turbine. This dissertation analyses the dynamic performance of generator-pole-slip protection during various stable and unstable power swing events. For the purpose of this dissertation, the Siemens 7UM622 machine protection relay is used to test the response of generator-pole-slip protection. This is done in two stages, firstly, within the DigSilent PowerFactory software by modelling the Siemens 7UM622 relay and then applying simulated time domain stable and unstable power swing conditions to the relay model to evaluate its response. Secondly, the actual 7UM622 hardware relay is injected with currents and voltages, which are produced during the time domain pole-slip simulations to determine if the relay hardware device operates in accordance with the Siemens relay technical manual. The power system analysed in the dissertation was heavily interconnected and a generator pole slip was rather unlikely. If an unlikely generator pole slip were to occur when the system is operating in a normal configuration (all power station outgoing feeders in service), the generator-pole-slip protection was able to detect and disconnect the generator after a single pole-slip cycle. v The critical fault clearing time decreases when an outgoing power station feeder is out of service (n-1 contingency) and therefore the probability of a generator pole slip increases. If a generator pole slip occurs when operating the network under a n-1 contingency, the pole-slip system electrical centre is usually located within the transmission network. In practice, the generator-pole-slip protection settings that are implemented at the power station do not reach into the transmission network (zone 2 disabled). Therefore, if a pole slip were to occur under a n-1 contingency, the generator-pole-slip protection would not be able to detect this condition. The zone 2 generator-pole-slip protection should rather reach into the transmission network, but the trip should only be issued after the third or fourth pole-slip cycle to allow the transmission line out-of-step protection sufficient time to separate the network into islands. The pole-slip function of the Siemens 7UM622 relay model within DigSilent PowerFactory operated in accordance with the Siemens relay technical manual and can be used in future to optimise and test generator-pole-slip protection settings. In the majority of cases, the Siemens 7UM622 relay hardware device operated in accordance with the Siemens relay technical manual. The only time that the relay operated incorrectly was when the measured impedance trajectory of a three-phase fault lingers on the inside and outside edge of the pole-slip impedance characteristic before exiting the pole-slip impedance characteristic. The stable and unstable power swing COMTRADE files that were generated for the tests performed in this dissertation can be used in future to test the generator-pole-slip protection at Kendal power station since it is rather difficult to test the pole-slip protection function properly without a COMTRADE file. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.

Page generated in 0.1044 seconds