• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of Numerical Methods to Study Arrangement and Fracture of Lithium-Ion Microstructure

Stershic, Andrew Joseph January 2016 (has links)
<p>The focus of this work is to develop and employ numerical methods that provide characterization of granular microstructures, dynamic fragmentation of brittle materials, and dynamic fracture of three-dimensional bodies.</p><p>We first propose the fabric tensor formalism to describe the structure and evolution of lithium-ion electrode microstructure during the calendaring process. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Applying this technique to X-ray computed tomography of cathode microstructure, we show that fabric tensors capture the evolution of the inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode. </p><p>We then shift focus to the development and analysis of fracture models within finite element simulations. A difficult problem to characterize in the realm of fracture modeling is that of fragmentation, wherein brittle materials subjected to a uniform tensile loading break apart into a large number of smaller pieces. We explore the effect of numerical precision in the results of dynamic fragmentation simulations using the cohesive element approach on a one-dimensional domain. By introducing random and non-random field variations, we discern that round-off error plays a significant role in establishing a mesh-convergent solution for uniform fragmentation problems. Further, by using differing magnitudes of randomized material properties and mesh discretizations, we find that employing randomness can improve convergence behavior and provide a computational savings.</p><p>The Thick Level-Set model is implemented to describe brittle media undergoing dynamic fragmentation as an alternative to the cohesive element approach. This non-local damage model features a level-set function that defines the extent and severity of degradation and uses a length scale to limit the damage gradient. In terms of energy dissipated by fracture and mean fragment size, we find that the proposed model reproduces the rate-dependent observations of analytical approaches, cohesive element simulations, and experimental studies.</p><p>Lastly, the Thick Level-Set model is implemented in three dimensions to describe the dynamic failure of brittle media, such as the active material particles in the battery cathode during manufacturing. The proposed model matches expected behavior from physical experiments, analytical approaches, and numerical models, and mesh convergence is established. We find that the use of an asymmetrical damage model to represent tensile damage is important to producing the expected results for brittle fracture problems.</p><p>The impact of this work is that designers of lithium-ion battery components can employ the numerical methods presented herein to analyze the evolving electrode microstructure during manufacturing, operational, and extraordinary loadings. This allows for enhanced designs and manufacturing methods that advance the state of battery technology. Further, these numerical tools have applicability in a broad range of fields, from geotechnical analysis to ice-sheet modeling to armor design to hydraulic fracturing.</p> / Dissertation
2

Contribution à la simulation numérique des structures en béton armé : utilisation de fonctions de niveau pour la modélisation de la fissuration et des renforts / Contribution to the numerical simulation of reinforced concrete structures : use of level set functions to model cracking and rebars

Lé, Benoît 15 November 2016 (has links)
La prédiction de l’état de fissuration est un enjeu crucial pour l’analyse des structures en béton armé, qui nécessite le recours à la modélisation et à la simulation numérique. Le calcul par éléments finis des structures en béton armé pose au moins deux problèmes majeurs :d’une part il existe peu de modèles permettant de traiter à la fois l’initiation, la propagation et l’ouverture des fissures, d’autre part le diamètre généralement faible des armatures métalliques par rapport aux dimensions des structures étudiées nécessite des maillages particulièrement fins. On propose donc des solutions à ces deux problématiques basées sur l’utilisation de fonctions de niveau (level set). L’endommagement et la fissuration du béton sont modélisés à l’aide de l’approche TLS (Thick Level Set). Cette méthode,développée en tant que méthode de régularisation des modèles d’endommagement locaux, utilise une level set afin d’introduire une longueur caractéristique. Cela permet de rendre aisée la localisation de la position des fissures, et donc d’enrichir le champ de déplacement parla méthode des éléments finis étendus (X-FEM) afin de modéliser l’ouverture des macro-fissures. Concernant la modélisation des armatures, une nouvelle approche multidimensionnelle est proposée. Une représentation volumique des armatures par la méthode X-FEM est utilisée dans les zones d’intérêt afin d’obtenir des résultats précis tout en simplifiant la procédure de maillage, tandis qu’une représentation linéique est utilisée dans le reste de la structure afin de réduire le nombre de degrés de liberté du calcul. La méthode de transition développée ici permet d’assurer la cohérence des résultats obtenus / Prediction of cracking is a key point for the analysis ofreinforced concrete structures, which requires the use of Modeling and numerical simulation. The analysis of reinforced concrete structures using the finite element method raises two issues: on one hand, few models areable to deal with the initiation, the propagation and the opening of cracks, on the other hand the diameter of thereinforcements which is usually small compared to the dimensions of the structures necessitates very fine meshes. Some solutions to these two problematics areproposed, based on the use of level set functions.Damage and cracking of concrete are modeled using theThick Level Set (TLS) approach. This method,developped as a mean to regularize local damagemodels, uses a level set to introduce a characteristic length. It makes the location of the cracks easy, whichallows to enrich the displacement field with the eXtendedFinite Element Method (X-FEM) in order to model the macro-cracks opening. Concerning the modeling of thereinforcements, a new multidimensionnal approach isproposed. A volumic representation of the reinforcements with the X-FEM method is used in the zones of interest to get accurate results while simplifying the meshing process, whereas a lineic representation isused elsewhere to decrease the number of degrees of freedom. The developed transition method insures the consistency of the results.

Page generated in 0.0476 seconds