• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 873
  • 177
  • 107
  • 68
  • 57
  • 32
  • 31
  • 26
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1669
  • 1669
  • 218
  • 211
  • 208
  • 183
  • 178
  • 166
  • 155
  • 141
  • 136
  • 133
  • 132
  • 126
  • 126
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Investigation of low temperature solution-based deposition process for flexible electronics /

Chang, Yu-Jen. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2007. / Printout. Includes bibliographical references. Also available on the World Wide Web.
152

Microscale observables for heat and mass transport in sub-micron scale evaporating thin film

Wee, Sang-Kwon 30 September 2004 (has links)
A mathematical model is developed to describe the micro/nano-scale fluid flow and heat/mass transfer phenomena in an evaporating extended meniscus, focusing on the transition film region under nonisothermal interfacial conditions. The model incorporates thermocapillary stresses at the liquid-vapor interface, a slip boundary condition on the solid wall, polarity contributions to the working fluid field, and binary mixture evaporation. The analytical results show that the adsorbed film thickness and the thin film length decrease with increasing superheat by the thermocapillary stresses, which influences detrimentally the evaporation process by degrading the wettability of the evaporating liquid film. In contrast, the slip effect and the binary mixture enhance the stability of thin film evaporation. The slip effect at the wall makes the liquid in the transition region flow with smaller flow resistance and thus the length of the transition region increases. In addition, the total evaporative heat flow rate increases due to the slip boundary condition. The mixture of pentane and decane increases the length of the thin film by counteracting the thermocapillary stress, which enhances the stability of the thin film evaporation. The polarity effect of water significantly elongates the thin film length due to the strong adhesion force of intermolecular interaction. The strong interaction force restrains the liquid from evaporation for a polar liquid compared to a non-polar liquid. In the experimental part, laser induced fluorescence (LIF) thermometry has been used to measure the microscale temperature field of a heated capillary tube with a 1 mm by 1 mm square cross section. For the temperature measurement, the calibration curve between the temperature and the fluorescent intensity ratio of Rhodamine-B and Rhodamine-110 has been successfully obtained. The fluorescent intensity ratio provides microscale spatial resolution and good temperature dependency without any possible bias error caused by illuminating light and background noise usually encountered in conventional LIF techniques. For the validation of the calibration curve obtained, thermally stratified fields established inside a glass cuvette of 10 mm width were measured. The measurement result showed a good agreement with the linear prediction. The temperature measurement in a 1 mm capillary tube could provide the feasible method of temperature measurement for the thin film region in the future.
153

Microstructure and properties of copper thin films on silicon substrates

Jain, Vibhor Vinodkumar 15 May 2009 (has links)
Copper has become the metal of choice for metallization, owing to its high electrical and thermal conductivity, relatively higher melting temperature and correspondingly lower rate of diffusivity. Most of the current studies can get high strength copper thin films but on an expense of conductivity. This study proposes a technique to deposit high strength and high conductivity copper thin films on different silicon substrates at room temperature. Single crystal Cu (100) and Cu (111) have been grown on Si (100) and Si (110) substrates, respectively. Single crystal Cu (111) films have a high density of growth twins, oriented parallel to the substrate surface due to low twin boundary energy and a high deposition rate. The yield strengths of these twinned Cu films are much higher than that of bulk copper, with an electrical resistivity value close to that of bulk copper. X-ray diffraction, transmission electron microscopy and nanoindentation techniques were used to show that high density twins are sole reason for the increase in hardness of these thin films. The formation of growth twins and their roles in enhancing the mechanical strength of Cu films while maintaining low resistivity are discussed.
154

Processing and Properties of Ferroelectric Ag(Ta,Nb)O3 Thin Films

Koh, Jung-Hyuk January 2002 (has links)
High tunability and low loss tangent of ferroelectric thinfilms offer unique opportunity for the development of variousmicrowave devices. Silver tantalate niobate, which showsexcellent microwave properties, was selected for this study.Ag(Ta,Nb)O3(ATN) showed week dielectric dispersion in a widefrequency range from 1 kHz up to 100 GHz, negligible losses upto 30 GHz, and ease to tailor paraelectric state in a widetemperature range by Ta:Nb ratio. This thesis is mainly based on the synthesis andcharacterization of niobate ferroelectric ATN thin films. Thinfilms for various measurements were prepared by pulsed laserdeposition and rf-magnetron sputtering techniques. X-ray diffraction (XRD) pattern show that ATN/Pt80Ir20films have been found to be (001) preferentiallyoriented, while the epitaxial quality of ATN/LaAlO3heterostructures have been ascertained. Dielectricproperties were analyzed by measuring the relationship betweendielectric permittivity and frequency as well as dielectricpermittivity and temperature. Reliable tracing of theferroelectric hysteresis polarization versus electric loopsindicate the ferroelectric state in ATN films at temperaturebelow 125 K and yields the remanant polarization of 0.4µC/cm2@ 77 K. The fundamental current-voltage behavior in Ag(Ta,Nb)O3ferroelectric films was measured usingMe/Ag(Ta,Nb)O3/Pt80Ir20, Me = Pd, Au, Cr, and Al, vertical capacitivecell structures with different top electrodes. Various kinds ofconduction mechanisms such as Schottky emission, Poole-Frenkel,Fowler-Nordheim, and ionic conduction were classified. Finally, by fabricating interdigital capacitors on the oxidesubstrates, the characteristics and performances of Ag(Ta,Nb)O3varactors were examined. Au/Cr/ATN/LaAlO3interdigital capacitors exhibited loss tangent aslow as 0.0033 @ 1 MHz, weak frequency dispersion of 5.8 % in 1kHz to 1 MHz range, tunability as high as 16.4 %,K-factor (tunability/tanδ) higher than 48.
155

Photoinduced dichroism in amorphous As2Se3 thin film

DeForrest, Dan 20 December 2005
The dichroism in amorphous As2Se3 induced by a polarized beam of near band-gap light (λ = 632.8 nm) was measured in films that ranged in thickness from 0.25 µm to 1.93 µm. Most noncrystalline materials are initially isotropic and homogeneous. When amorphous As2Se3 (a chalcogenide glass) absorbs an intense pump-beam of polarized light, the absorption coefficient for light polarized in the same direction as the pump-beam is less than for the perpendicular polarization, i.e. the sample becomes anisotropic (dichroic). The induced dichroism is reversible by rotating the polarization of the pump light by 90°. Induced dichroism is potentially useful in various photonic devices including optical switches, optical memory, and photowritable polarizers.<p>Several aspects of photoinduced anisotropy in a-As2Se3 have been analyzed:<p>(i) rate of photoinduced anisotropy buildup as a function of inducing beam intensity and sample thickness, <p>(ii) the kinetics of the photoinduced anisotropy buildup in terms of a stretched exponential curve, <p>(iii) the stretched exponent, β, as a function of inducing beam intensity and sample thickness, <p>(iv) reversibility of the photoinduced anisotropy, (v) saturation level of photoinduced anisotropy as a function of inducing beam intensity and sample thickness.<p>The anisotropy buildup kinetics has been found to follow a stretched exponential behavior and that there exists an inverse relationship between the pump intensity and the time constant, τ. The τ(I) vs intensity (I) relationship more closely follows a logistic dose response curve than a simple straight line or power law relationship. There exists a direct relationship between the time contact  and the sample thickness, where a longer anisotropy buildup time is required as the sample thickness increases. The stretched exponent, β, was found to be approximately 0.6 and has a slight dependence on the inducing light intensity. The correlation of the stretching exponent, β, to sample thickness, L, was found to have a weak inverse relationship, that is β tends to decrease as the sample thickness increases.<p>The findings in this work demonstrate that the anisotropy orientation could be changed indefinitely since it was found that even after 100 orientation changes the anisotropy saturation had no measurable fatiguing. The anisotropy saturation level was found to be independent of the inducing beam intensity and linearly proportional to the sample thickness.
156

Growth mechanism of YBa2Cu3O7-y thin films on the metallic tapes by MOCVD

Yoshida, Y., Hirabayashi, I., Kurosaki, H., Akata, H., Higashiyama, K., Takai, Y. 03 1900 (has links)
No description available.
157

Orientation mechanism of REBa/sub 2/Cu/sub 3/O/sub y/ (RE = Nd, Sm, Gd, Y, Yb) thin films prepared by pulsed laser deposition

Ichino, Yusuke, Sudoh, Kimihiko, Miyachi, Koji, Yoshida, Yutaka, Takai, Yoshiaki, 一野, 祐亮, 吉田, 隆 06 1900 (has links)
No description available.
158

Photoinduced dichroism in amorphous As2Se3 thin film

DeForrest, Dan 20 December 2005 (has links)
The dichroism in amorphous As2Se3 induced by a polarized beam of near band-gap light (λ = 632.8 nm) was measured in films that ranged in thickness from 0.25 µm to 1.93 µm. Most noncrystalline materials are initially isotropic and homogeneous. When amorphous As2Se3 (a chalcogenide glass) absorbs an intense pump-beam of polarized light, the absorption coefficient for light polarized in the same direction as the pump-beam is less than for the perpendicular polarization, i.e. the sample becomes anisotropic (dichroic). The induced dichroism is reversible by rotating the polarization of the pump light by 90°. Induced dichroism is potentially useful in various photonic devices including optical switches, optical memory, and photowritable polarizers.<p>Several aspects of photoinduced anisotropy in a-As2Se3 have been analyzed:<p>(i) rate of photoinduced anisotropy buildup as a function of inducing beam intensity and sample thickness, <p>(ii) the kinetics of the photoinduced anisotropy buildup in terms of a stretched exponential curve, <p>(iii) the stretched exponent, β, as a function of inducing beam intensity and sample thickness, <p>(iv) reversibility of the photoinduced anisotropy, (v) saturation level of photoinduced anisotropy as a function of inducing beam intensity and sample thickness.<p>The anisotropy buildup kinetics has been found to follow a stretched exponential behavior and that there exists an inverse relationship between the pump intensity and the time constant, τ. The τ(I) vs intensity (I) relationship more closely follows a logistic dose response curve than a simple straight line or power law relationship. There exists a direct relationship between the time contact  and the sample thickness, where a longer anisotropy buildup time is required as the sample thickness increases. The stretched exponent, β, was found to be approximately 0.6 and has a slight dependence on the inducing light intensity. The correlation of the stretching exponent, β, to sample thickness, L, was found to have a weak inverse relationship, that is β tends to decrease as the sample thickness increases.<p>The findings in this work demonstrate that the anisotropy orientation could be changed indefinitely since it was found that even after 100 orientation changes the anisotropy saturation had no measurable fatiguing. The anisotropy saturation level was found to be independent of the inducing beam intensity and linearly proportional to the sample thickness.
159

Deep chemical etching on quartz substrates and integrated passive devices

Huang, Chuan-Yi 29 July 2010 (has links)
The purpose of the thesis is to investigate and the corrosion resistance of the masking materials on quartz substrates in deep chemical etching using NH4HF2 solutions. Masking materials, including Cr/Au, PLA-900 position photoresist, and NPR-2500F negative photoresist were used for test. In the deep etching of the quartz substrates, we observed changes of adhesion of the masking materials. The process parameters obtained from deep etching were used to fabricate quartz resonators. Before etch, the etch masks using Cr/Au thin films were deposited on both sides of the quartz substrates. Cr/Au masking materials were stripped after the etching, and Cr/Au electrodes were deposited by sputtering on both sides of quartz substrates. Finally, the quartz resonators were obtained by dicing. Passive devices, including capacitors and inductors were also fabricated and measured for integrated passive devices, such as band-pass filters.
160

Deformation Mechanism of Amorphous/nanocrystalline Multilayer Thin Films on Polyimide Substrates

Huang, Han-shen 05 September 2011 (has links)
The tensile behavior of the monolithic amorphous ZrCu and crystalline Cu thin films and the ZrCu/Cu multilayered thin films, coated on polyimide (PI) substrates in different layer thicknesses has been investigated. The scanning electron microscope (SEM) morphology of the as-deposited thin film is composed of sphere domains. Between the domains, stress concentration is induced. The cracks perpendicular to the loading direction would propagate along the domains. The constituent component examined by energy dispersive X-ray spectrometer (EDS) shows that the average composition (in atomic percent) amorphous thin film is Zr46.78Cu53.22, closed to the designed Zr50Cu50 goal. The X-ray diffraction (XRD) results show that the multilayered specimens are composed of both amorphous ZrCu and nanocrystalline Cu crystal structure. As the monolayer thickness become lower, the normalized peak height and grain sizes of Cu become lower. To obtain the mechanical properties of the coated films, deducting the contribution of substrates is used in this study. The tensile Young¡¦s moduli of monolithic amorphous ZrCu and nanocrystalline Cu thin films are close to the results extracted from micro-compression. Based on the current tensile results for the moduli of multilayered thin films, the obtained mechanical data are demonstrated to be reliable and are consistent with the theoretical values predicted by Rule of Mixture. As the thickness decreases from 100 nm down to 10 nm, the tensile Young¡¦s moduli do not vary much. On the other hand, the maximum tensile stress shows strong variation, being highest for the layer thickness of 25 nm. The deformed surface morphologies characterized by scanning electron microscopy also exhibit a similar trend. The optimum tensile properties of the monolithic and multilayered thin film combinations are examined and discussed in this thesis.

Page generated in 0.0426 seconds