Spelling suggestions: "subject:"thin fim."" "subject:"hin fim.""
281 |
Development of Hartmann Screen Test for Measurement of Stress during Thin Film DepositionForouzandeh, Farhad, s2007552@student.rmit.edu.au 2008 June 1930 (has links)
The Hartmann screen test (HST) is a well-known technique that has been used for many years in optical metrology. This thesis describes how the technique has been adapted to create a system for continuous in situ monitoring of the internal stress in thin films during plasma deposition. Stress is almost always present in thin films. Stress can affect the physical properties of film, and also influence phenomena which are important in the technology of thin film manufacture such as adhesion and crystallographic defects. For these reasons, it is very important to control and manage the film stress during manufacture of devices based on thin films. The commonest way to infer stress is to measure the change in substrate curvature that it produces. This is often done by comparison of substrate curvatures before and after deposition with surface profilometry, or interferometry. However, these methods are unsuitable for implementing during film deposition in the vacuum chamber. A novel method for measuring changes in curvature of the thin film substrate in situ has been developed, making use of the HST. An expanded laser beam is passed through a screen containing a number of small apertures, which breaks it up into several rays. After reflecting from the surface of the thin film wafer, the rays are received on an array detector as a spot pattern. Image processing is performed on the recorded spot images to determine the positions of spots accurately. Spot centre positions are recorded at start of deposition as a reference, then their displacement is tracked with time during deposition. The spot deflections are fitted to a theoretical model, in which the change in sample profile is described by a second-order surface. The principal axes of curvature of this surface and their orientation are obtained by a least-squares fitting procedure. From this, the thin film stress can be inferred and monitored in real time. Equipment using this technique has been designed and developed in prototype form for eventual use in the RMIT cathodic arc deposition facility. First experiments with a classic Hartmann screen configuration proved that the technique gave good results, but precision was limited by diffraction and interference effects in the recorded image which made determination of spot centres more difficult. A modified configuration was developed, in which a camera is focused on the Hartmann screen, giving much sharper spot patterns and improved resolution. Tests on the prototype system and comparison with other techniques have shown that it is possible to determine changes in sample curvature with a precision of approximately 0.01 m-1. This corresponds to stress changes of around 0.5 GPa for typical wafer and film thicknesses used in practice. The Hartmann screen test is straightforward to use and to interpret. Image processing and analysis of the recorded spot patterns can be automated and performed continuously in real time during thin film deposition. The system promises to be very useful for monitoring stress and thus controlling the deposition process for improved quality of thin film manufacture.
|
282 |
Mobility enhancement for organic thin-film transistors using nitridation methodKwan, Man-chi. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
283 |
Development of a Dense Diffusion Barrier Layer for Thin Film Solar CellsPillay, Sankara January 2009 (has links)
<p>Tantalum diffusion barrier coatings were investigated as a way to improve the conversion efficiency of CIGS (copper indium gallium diselenide) solar cells. Tantalum coatings were deposited upon silicon and stainless steel foil substrates using direct current magnetron sputtering (DcMS) and high power impulse magnetron sputtering (HiPIMS). The coatings were characterized using scanning electron microscopy (SEM). Cross-sectional scanning electron micrographs revealed that the HiPIMS coatings appeared denser than the DcMS coatings.</p>
|
284 |
Characterization of solution-based inorganic semiconductor and dielectric materials for inkjet printed electronicsMunsee, Craig L. 14 June 2005 (has links)
The long-term goal of this research project is the development of solution-based
inorganic dielectric and semiconductor materials for inkjet printed electronics.
The main focus of this thesis involves testing of the materials and devices
under development.
A new solution-based inorganic dielectric material (HfOSO₄), given the
name hafsox, is developed and shows excellent dielectric properties. Hafsox with
the addition of lanthanum, to improve film dehydration, has successfully been
demonstrated as a gate dielectric. Metal-insulator-metal (MIM) capacitance testing
of hafsox with lanthanum, has resulted in a low loss tangent of 0.30% at 1
kHz, a relative permittivity of 11.47 at 1 kHz, a breakdown voltage of 6.30 MV
cm⁻¹, and a leakage current density of 4.38 nA cm⁻² at 1 MV cm⁻¹.
Progress has also been achieved in the development of solution-based semiconductor
materials. To date the most successful of these materials is zinc indium
oxide (ZIO), which has been demonstrated as a thin-film-transistor (TFT) channel
material. This ZIO TFT is a depletion-mode device with a turn-on-voltage
of V[subscript on]~ -19 V, a threshold voltage of V[subscript T] ~-16 V, and a drain current on-to-off
ratio of ~10³. Mobilities extracted from this ZIO TFT include an incremental
mobility of μ[subscript inc] ~0.05 cm² V⁻' sec⁻', an effective mobility of μ[subscript eff] ~0.02 cm²
V⁻' sec⁻', and an average mobility of μ[subscript avg] ~0.02 cm² V⁻' sec⁻' at V[subscript GS]=20 V.
The development of metal-semiconductor field-effect transistors (MESFET)
TFTs is also investigated as a means of eliminating the need for a dielectric
material in order to reduce the complexity of fabricating circuits. MESFETs are
attempted with semiconductor materials such as CdS that is deposited by chemical
bath deposition (CBD) and SnO₂ that is deposited by RF magnetron sputtering,
but with little success. The most successful MESFET-like device fabricated, employing
SnO₂ as the channel material, is a strong depletion-mode device with a
small amount of gate voltage modulation. / Graduation date: 2006
|
285 |
State space modeling of alternating-current thin-film electroluminescent devicesPeery, Jeffrey B. 28 July 1997 (has links)
Graduation date: 1998
|
286 |
TiNi shape memory alloy thin films for microactuator applicationFu, Yongqing, Du, Hejun 01 1900 (has links)
TiNi films were prepared by co-sputtering TiNi target and a separate Ti target. Crystalline structure and phase transformation behaviors of TiNi films were investigated. Results showed that TiNi films had fine grain size of about 500 nm and fully martensitic structure at room temperature. X-ray photoelectron spectroscopy (XPS) results indicated that there is adherent and natural TiO₂ film, which is beneficial to its corrosion resistance and biocompatibillity. Results from differential scanning calorimeter (DSC), in-situ X-ray diffraction (XRD) and curvature measurement revealed clearly martensitic transformation upon heating and cooling. The TiNi films were further deposited on micromachined silicon cantilever and membrane structures in order to form micro-gripper or microvalve with large deformation due to shape-memory effect. / Singapore-MIT Alliance (SMA)
|
287 |
Nanoscale resonators fabricated from metallic alloys, and modeling and simulation of polycrystalline thin film growthOphus, Colin L 06 1900 (has links)
Part I - We have designed a binary metallic alloy for nanoscale resonator applications. We used magnetron sputtering to deposit films with different stoichiometries of aluminum and molybdenum and then characterized the microstructure and physical properties of each film. A structure zone map is proposed to describe the dependence of surface and bulk structure on composition. We then fabricated proof of principle resonators from the Al-32 at%Mo composition, selected for its optimized physical properties. An optical interferometer was used to characterize the frequency response of our resonators.
Part II - We investigate the growth of faceted polycrystalline thin films with modeling and simulations. A new analytic model is derived for the case of orientation dependent facet growth velocity and the dependence of growth on initial grain orientations is explicitly calculated. Level set simulations were used to both confirm this analytic model and extend it to include various angular flux distributions, corresponding to different deposition methods. From these simulations, the effects of self-shadowing on polycrystalline film growth are quantitatively evaluated. / Materials Engineering
|
288 |
Engineering optical nanomaterials using glancing angle depositionHawkeye, Matthew Martin 06 1900 (has links)
Advanced optical technologies profoundly impact countless aspects of modern life. At the heart of these technologies is the manipulation of light using optical materials. Currently, optical technologies are created using naturally occurring materials. However, a new and exciting approach is to use nanomaterials for technology development. Nanomaterials are artificially constructed material systems with precisely engineered nanostructures. Many technological revolutions await the development of new nanoscale fabrication methods that must provide the ability to control, enhance, and engineer the optical properties of these artificial constructs.
This thesis responds to the challenges of nanofabrication by examining glancing angle deposition (GLAD) and improving its optical-nanomaterial fabrication capabilities. GLAD is a bottom-up nanotechnology fabrication method, recognized for its flexibility and precision. The GLAD technique provides the ability to controllably fabricate high-surface-area porous materials, to create structurally induced optical-anisotropy in isotropic materials, and to tailor the refractive index of a single material. These three advantages allow GLAD to assemble optical nanomaterials into a range of complex one-dimensional photonic crystals (PCs).
This thesis improves upon previous GLAD optical results in a number of important areas. Multiple optical measurement and modeling techniques were developed for GLAD-fabricated TiO2 nanomaterials. The successful characterization of these nanomaterials was extended to engineer PC structures with great precision and a superior degree of control. The high surface area of basic PC structures was exploited to fabricate an optimized colourimetric sensor with excellent performance. This colourimetric sensor required no power source and no read-out system other than the human eye, making it a highly attractive sensing approach. Incorporating engineered defects into GLAD-fabricated PCs established a new level of design sophistication. Several PC defect structures were examined in detail, including spacing layers and index profile phase-shifts. Remarkable control over defect properties was achieved and intriguing polarization-sensitive optical effects were investigated in anisotropic defect layers. The success of these results demonstrates the precision and flexibilty of the GLAD technique in fabricating optical nanomaterials and advanced photonic devices. / Micro-Electro-Mechanical Systems (MEMS) and Nanosystems
|
289 |
Application of Ordered Nano-TiO2 Thin Film to Dye-Sensitized Cell by Anodization methodLin, Yuan-hong 26 July 2007 (has links)
We use different methods to deposit Ti thin film on the ITO glass substrate. Under the circumstances of using fixed concentration of electrolyte, changing anodic time, and applying voltage, we are able to use anodic method to make ordered nano TiO2 thin film,of which the smallest pore size is 18nm and the thickness is 4500
|
290 |
Physical Characteristics of Poly-si Thin Film Transistor with C-V measurementChuang, Hung-i 28 July 2007 (has links)
¡@¡@Because of the poly-si thin film transistor have the advantage of high mobility, it can improve the analysis for the flat plan display. Using the above advantage can combine the integrated circuit as control IC and memory on the small panel to reduce the number between the switch circuits and the outside contacts. These precise circuits must be considering the photo current¡Bthermal effects and the parasitical capacitance more due to the influence of these precise circuits is more serious than the switch circuits. In my thesis, the research of the electrical characteristics of the newest excimer laser crystallize coplane poly-si thin film transistors ,and using the device length with width is 128um/6um and 128um/16um can be extracted that the environment of the facing illumination have the photo-leakage current than none illumination about four orders, and the photo-leakage current is not consider with any gate voltage.
¡@¡@With the discussion of the capacitance, the main point of my researches is to change different conditions to extract the gate to source capacitance (Cgs). In addition, the slight carriers may effect the devices with the high mobility system on panel (SOP) technology error, the temperature must be considered.
¡@¡@We find the mobility is bigger at the environment of the temperature is 300K than the environment of the temperature is 100K when the device work in the linear region and the on current is lower at the environment of the temperature is 300K than the environment of the temperature is 100K when the device work in the saturation region. Using some references and some models as the concepts can analysis some phenomenons I refer to above.
|
Page generated in 0.0683 seconds