• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental approach for studying the creep behavior of thin film/substrate interfaces /

Parks, Carl L. January 2004 (has links) (PDF)
Thesis (M.S. in Mechanical Engineering)--Naval Postgraduate School, Sept. 2004. / Thesis Advisor(s): Indranath Dutta. Includes bibliographical references (p. 37-41). Also available online.
2

Physical aging of thin glassy polymer films

Huang, Yu 28 August 2008 (has links)
Not available / text
3

Exploring the Magnetic and Electronic Properties of van der Waals Materials

Han, Sae Young January 2024 (has links)
This dissertation provides a comprehensive exploration of the synthesis and properties of van der Waals materials for two-dimensional applications. We delve into the unique characteristics of these materials, which are composed of layers bound by weak van der Waals forces, in contrast to strong covalent or ionic bonds. Their layered structure allows for mechanical exfoliation, leading to the isolation of a monolayer or few-layer flakes. These structures retain the intrinsic properties of the bulk material while also exhibiting novel characteristics due to their reduced dimensionality. Chapter 1 briefly introduces van der Waals materials and their advantageous characteristics for 2D applications. It also provides a brief history of the discovery of atomically thin magnetic materials and their applications. Chapters 2 and 3 discuss the synthesis and characterization of a layered metallic antiferromagnet, TaFe1.14Te3. Using a combination of magnetic, electronic, and transport measurements supported by first-principles DFT calculations, we investigate the interplay between the magnetic and electronic properties in the layered van der Waals magnet. Chapter 4 explores a magnetic van der Waals semiconductor, KMnBi. KMnBi is part of the alkali metal manganese pnictide systems and is predicted to be a near-room temperature antiferromagnet and a small-gap semiconductor. Chapter 5 discusses the interplay between molecular symmetry and broad-band chiral absorbance in a series of [6]helicenes for practical chiroptical applications. Finally, Chapter 6 discusses the synthesis and characterizations of a systematically doped allotrope of carbon, graphullerite. We explore both solid-state and solution intercalation studies and the effects on their physical properties.
4

Herstellung und Charakterisierung von magnetisch heterogenen Schichten und Elementen

Martin, Norbert 25 October 2011 (has links)
In der vorliegenden Dissertation wurden magnetisch heterogene, weichmagnetische Schichten hergestellt und in ihren magnetischen Eigenschaften gezielt modifiziert. Zu Beginn wurden in makroskopischen Bereichen Strukturen mit lateral in Streifen modulierter magnetischer Anisotropie im Mikrometermaßstab hergestellt, um den Einfluss der inneren Grenzflächen auf die magnetische Hysterese zu charakterisieren. Dazu wurden über Ionenimplantation in einer funktionalen Deckschicht lokal zusätzliche mechanische Spannungen generiert, ohne die intrinsischen Eigenschaften der magnetischen Schicht zu verändern. Mit der entwickelten Methode können rein über das gezielte Induzieren mechanischer Spannungen hybride magnetische Eigenschaften mit periodisch alternierenden, magnetisch leichten Achsen erzeugt werden. Im mesoskopischen Bereich beeinflussen zusätzlich die äußere Form und die Größe der magnetisch heterogenen Elemente die magnetischen Eigenschaften. In dieser Dissertation wurde für streifenstrukturierte Quadrate ein analytisches Modell entwickelt, um die Wechselwirkungen von Grenzflächen innerhalb der Elemente und der lateralen Elementgrenzen auf das Ummagnetisierungsverhalten zu simulieren. Das modellierte Ummagnetisierungsverhalten wurde mit experimentell gemessenen Daten unterlegt und bestätigt. Im Vergleich zwischen Modell und Experiment zeigte sich, dass die Größe der externen Felder, bei denen die Magnetisierung innerhalb der Elemente schaltet, voneinander abweicht. Dies ist bedingt durch die bevorzugte Nukleation magnetischer Domänen an den lateralen Begrenzungen der quadratischen Elemente. Ein Aspekt, der die Nukleation von Domänen wesentlich beeinflusst, ist die Form der lateralen Begrenzung. Durch gezielte Manipulation des Kantenwinkels wurde das Ummagnetisierungsverhalten weichmagnetischer Kreisscheiben gesteuert. Dabei nukleiert der für Kreisscheiben charakteristische Vortexzustand bevorzugt in Elementen mit abgeschrägten Kanten. Die Gesamtheit der Daten zeigt, dass die magnetischen Eigenschaften heterogener Strukturen nicht nur von den Eigenschaften der Ausgangsmaterialien abhängen, sondern entscheidend von den Größen und Formen der Strukturierungen und der Elemente bestimmt werden.
5

Engineering and Activating Room-Temperature Quantum Light Emission in Two-Dimensional Materials with Nano-Programmable Strain

Yanev, Emanuil January 2024 (has links)
Micro– and subsequently nano–scale fabrication techniques have reshaped our world more drastically than almost any other development of the last half-century. Spurred by the invention of the transistor at Bell Labs in 1947, monolithic integrated circuits—or microchips in the colloquial lexicon—were developed in ’59, kickstarting the modern digital age as we know it. More recently, the maturation of classical computing technology and significant advancements in materials science have led to a boom of interest in and progress by the quantum sector on both computation and communication fronts. The explosive growth currently underway in the field of quantum information science (QIS) marks the dawning of a new age, which will undoubtedly transform our world in ways we have yet to imagine. This dissertation seeks to leverage advanced nanofabrication approaches, atomically thin materials, and state of the art microscopy techniques to develop room-temperature single photon sources for QIS applications. A basic overview of 2D materials is provided in Chapter 1. Particular emphasis is placed on the optical properties of tungsten diselenide (WSe2), which is followed by a brief discussion of quantum emitters in 2D and other material systems. Chapter 2 describes the scanning near-field optical microscopy (SNOM) technique we use to investigate the photoluminescence (PL) response of strained WSe₂ with resolution well below the classical diffraction limit. The third chapter is dedicated to the various fabrication methods explored and developed to produce the plasmonic substrates necessary for near-field optical studies. The first section focuses on the creation of extremely flat metallic surfaces, while the second deals with extremely sharp metallic stressors. These two platforms enable the investigations of nanobubbles—touched upon in Chapter 2—and nanowrinkles, which are the subject of discussion in Chapter 4. The strain confinement provided by these wrinkles leads to highly localized quantum dot-like states that exhibit excitation power saturation at room temperature. Together, these studies lay the groundwork for achieving high-temperature quantum emission in atomically thin semiconducting van der Waals materials.

Page generated in 0.0603 seconds