• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectral-element simulations of separated turbulent internal flows

Ohlsson, Johan January 2009 (has links)
No description available.
2

Spectral-element simulations of separated turbulent internal flows

Ohlsson, Johan January 2009 (has links)
QC 20101105
3

The Impact of Three Dimensional Flow Anisotropy and Transients on Turbulence Ingestion Noise in Open Rotors

Banks, Jarrod Thomas 27 June 2024 (has links)
The effect of flow anisotropy and three dimensional separation on the turbulent structure and radiated turbulence ingestion noise of a rotor in two experimental configurations is studied. The first consists of a non-axisymmetric boundary layer wake ingested by a rotor mounted at the aft of a body of revolution inclined at 5 degree angle of attack. In the second configuration a transient disturbance is generated by an upstream wing body junction pitching from zero to 20 degree angle of attack . This disturbance is convected downstream and ingested into a rotor immersed in a wall boundary layer. In both cases flow velocimetry at the rotor inflow is done and the far field sound is measured. The flow velocimetry in the wake of the inclined body of revolution shows evidence of three dimensional separation and vortex rollup between the lee and body sides. A boundary layer embedded shear layer develops as the turbulent kinetic energy is pulled off the wall by the flow separation and is visible in the port side velocimetry. The turbulent structure of this shear layer and the boundary layer on the lee of the body is visualized using compact eddy structure representation and the modes on the port side are shown to be stretched versions of similar modes seen in an equilibrium, zero pressure gradient boundary layer. The effect these structures had on the radiated sound served to both increase blade to blade correlation and the overall broadband levels of the sound. Measurements of the sound using an acoustic array showed directivity effects that resulted from the location of the embedded shear layer and rollup vortices. Although the vortices likely have some effect on the spectra, most of the noise is dominated by the turbulence ingestion of the embedded shear layer. For the second experimental configuration the transient motion was documented through repeated measurements of the flow field and sound, and an ensemble average of the measurements taken. Overall the flow was unsteady, particularly in the outer region of the boundary layer. The sound radiated was shown to be tonal during the first half of the interaction, where the flow is dominated by a deterministic mean flow change, and attributed to a form of periodic unsteady loading. During the latter half of the disturbance the broadband and overall sound levels increased significantly and are associated with the interaction of the rotor with flow separation over the wing body junction when it reached a critical, 16 degree angle of attack. / Doctor of Philosophy / The interaction of rotors and propellers with turbulence is commonly encountered when vehicles transit fluid mediums. In vehicles with aft mounted propellers, such as pusher type aircraft or underwater vehicles, turbulent boundary layers developed over the vehicle surface are ingested by the propeller. The size or scale of the average turbulent eddy greatly affects the type of sound generated by the interaction. For eddies that are small enough to only interact with one blade, the blade angle of attack varies randomly as it rotates through the turbulence and this radiates broadband sound. However, if the blade encounters eddies that are large or long enough to interact with multiple blades then the angle of attack, and thus the fluctuating lift force, begins to be correlated for each passage of the blade. This is known as blade to blade correlation and produces energy and sound concentration around the frequencies that correspond to the blade passage. This phenomenon is fairly well understood and many attempts have been made to model and predict the sound spectra from a rotor encountering turbulence in this manner. However these models often assume isotropic and homogenous turbulence when making predictions. This assumption works well in many applications, however, often the turbulence the rotor encounters is anisotropic with significant flow inhomogeneities. Thus, experimental investigations into the mechanisms and sources of sound in inhomogenous and anisotropic flows is necessary in an attempt to inform further flow and acoustic models. In this dissertation the inflow and acoustic response of a rotor ingesting significantly complex and anisotropic flows is characterized. It focuses on two commonly encountered flow arrangements; a rotor mounted at the stern of a body of revolution at an angle of attack, and a rotor ingesting a turbulent wall boundary layer with transient disturbances introduced by an upstream wing body junction. In both cases the flow is three dimensional and the rotor encounters significant circumferential turbulence variation during its rotation through the resultant turbulent flow field. For the flow about the body of revolution the flow and noise appear to be driven by the rotor interaction with an embedded shear layer that results from three dimensional separation between the lee and windward sides of the body. For the transient disturbance interaction the rotor noise response shows two separate noise sources. During the first half of the disturbance the blade response is tonal and associated with a deterministic blade angle of attack change as the rotor interacts with the transient. In the latter half of the disturbance the rotor broadband noise is significantly increased due to flow separation over the wing body junction.
4

Sturcture of Three-Dimensional Separated Flow on Symmetric Bumps

Byun, Gwibo 14 November 2005 (has links)
Surface mean pressures, oil flow visualization, and 3-velocity-component laser-Doppler velocimeter measurements are presented for a turbulent boundary layer of momentum thickness Reynolds number, 7300 and thickness delta over two circular based axisymmetric bumps of height H = delta and 2delta and one rectangular based symmetric bump of H = 2delta. LDV data were obtained at one plane x/H ¥ 3.26 for each case. Complex vortical separations occur on the leeside and merge into large stream-wise mean vortices downstream for the 2 axisymmetric cases. The near-wall flow (y+ < 90) is dominated by the wall. For the axisymmetric cases, the vortices in the outer region produce large turbulence levels near the centerline and appear to have low frequency motions that contribute to turbulent diffusion. For the case with a narrower span-wise shape, there are sharper separation lines and lower turbulence intensities in the vortical downstream flow. Fine-spatial-resolution LDV measurements were also obtained on half of the leeside of an axisymmetric bump (H/delta = 2) in a turbulent boundary layer. Three-dimensional (3-D) separations occur on the leeside with one saddle separation on the centerline that is connected by a separation line to one focus separation on each side of the centerline. Downstream of the saddle point the mean backflow converges to the focal separation points in a thin region confined within about 0.15delta from the local bump surface. The mean backflow zone is supplied by the intermittent large eddies as well as by the near surface flow from the side of the bump. The separated flow has a higher turbulent kinetic energy and shows bimodal histograms in local and U and W, which appear to be due to highly unsteady turbulent motions. By the mode-averaged analysis of bimodal histograms, highly unsteady flow structures are estimated and unsteady 3-D separations seem to be occurring over a wide region on the bump leeside. The process of these separations has very complex dynamics having a large intermittent attached and detached flow region which is varying in time. These bimodal features with highly correlated local u and w fluctuating motions are the major source of large Reynolds stresses local u2, w2 and -uw. Because of the variation of the mean flow angle in the separation zones, the turbulent flow from different directions is non-correlated, resulting in lower shearing stresses. Farther from the wall, large stream-wise vortices form from flow around the sides of the bump. / Ph. D.
5

Near Wall Behavior of Vortical Flow around the Tip of an Axial Pump Rotor Blade

Tian, Qing 08 January 2007 (has links)
This dissertation presents the results from an experimental study of three-dimensional turbulent tip gap flow in a linear cascade wind tunnel with 3.3% chord tip clearance with and without moving endwall simulation. Experimental measurements have been completed in Virginia Tech low speed linear cascade wind tunnel. A 24" access laser-Doppler velocimeter (LDV) system was developed to make simultaneous three-velocity-component measurements. The overall size of the probe is 24"à 37"à 24"and measurement spatial resolution is about 100 μm. With 24" optical access distance, the LDV probe allows measurements to be taken from the side of the linear cascade tunnel instead of through the bottom of the tunnel floor. The probe has been tested in a zero-pressure gradient two-dimensional turbulent boundary layer. Experimental measurements (oil flow visualization, pressure measurement, and LDV measurement) for the stationary wall captured the major flow structures of the tip leakage flow in the linear compressor cascade, such as tip leakage vortex, tip leakage vortex separation and tip separation vortex. Large velocity gradients in the tip leakage vortex separation, tip leakage vortex, and tip separation vortex regions generate large production of the Reynolds stresses and turbulent kinetic energy. One of the most interesting features of the tip leakage flow is the bimodal velocity probability histograms of the v component due to the unsteady motion of the flow in the interaction region between the tip leakage vortex and tip leakage jet. The tip separation vortex, tip leakage vortex separation, and tip leakage vortex contain most of turbulent kinetic energy and generate the highest dissipation rate. Relative motion of the endwall significantly affects the tip gap flow structures, especially in the near wall region. Compared to the stationary wall case, velocity gradients in the near wall region for the moving wall case are much smaller and lower velocity gradients in the near wall region cause the low production of Reynolds stresses and turbulent kinetic energy. Similar to the stationary wall case, high Reynolds stresses and turbulent kinetic energy values are mainly located in the vicinity of the tip leakage vortex and tip separation vortex region. The bimodal velocity probability histograms of the v component are also found at the same locations. The tip separation vortex with most of the turbulent kinetic energy generates the highest dissipation rate. The dissipation rate in the tip leakage vortex region is reduced with the decrease of turbulent kinetic energy under the moving wall effect. / Ph. D.
6

An Experimental Spatio-Temporal Analysis of Separated Flows Over Bluff Bodies Using Quantitative Flow Visualization

Vlachos, Pavlos P. 23 August 2000 (has links)
In order to study three-dimensional unsteady turbulent flow fields such as the wakes of bluff bodies, a Digital Particle Image Velocimetry (DPIV) system was developed. This system allows non-intrusive two-dimensional and time varying velocity measurements. Software and hardware modifications necessary to enhance the capabilities of the system were preformed, resulting in increased frequency resolution. However, due to hardware limitations and limitations inherited from the implementation of the method, space resolution is reduced. Subsequently, digital image processing tools to improve the space resolutions were developed. The advantages and limitations of the method for the study of turbulent flows are presented in detail. The developed system is employed in the documentation of time-varying turbulent flow fields. Initially we study the spanwise variation of the near wake of a low-aspect ratio, surface-mounted, circular cylinder piercing a free surface. The asymmetry of the end conditions combined with the natural unsteadiness of the vortex shedding generates a very complex flow filed which is difficult to study with conventional methods. By employing the aforementioned system we are able to reveal a departure of the two-dimensional character of the flow in the form of oblique vortex shedding. The effect of free surface on the vortex formation length and on the vortex reconnection process is documented. Near the free surface the alternate mode of vortex shedding is suppressed, leading to simultaneous shedding of vortices in the wake. Indications of vortex dislocations and change of the vortex axis in order to reconnect to the free surface are observed. Finally, a novel approach of reconstructing the three-dimensional, time -varying volume of the flow field by obtaining simultaneous measurements of Laser Doppler Velocimetry and Particle Image Velocimetry planes is presented. The same field is investigated with focus on the streamwise structures. Three-dimensional streamwise vortical structures are known to exist due to instabilities of plane shear layers. Similar streamwise vortices, also known as braid vortices have been observed in the past in the wake of circular cylinders with symmetric boundary conditions. The present spatio-temporal analysis demonstrated coexistence of two types of streamwise vortices in the wake, bilge and braid type of vortices. These may be due to the three dimensionality introduced by the free surface. In addition, the sufficient time resolution allowed the detection of the primary Von-Karman vortex through a plane of interrogation normal to the free stream, thus revealing the spanwise variation of the vortex shedding and its evolution at different downstream stations. The combination of the effect of the asymmetric boundary conditions with a free surface is investigated by adding one more source of three-dimensionality in terms of inclination of the cylinder axis. Hydrogen-bubble and particle-flow visualizations are preformed in combination with Laser-Doppler Velocimetry measurements. From both qualitative and quantitative results the effects of inclination and Froude number are documented. It is proved that the vortex shedding is suppressed for high values of the Froude number, however the inclination counteracts the vortex suppression and favors the vortex shedding mechanism. In addition, in the region of the no-slip boundary condition the flow is dominated by the effect of the horseshoe vortex. The case of a three-dimensional separated flow over a surface-mounted prism is investigated using a modified version of the system. The character of the separated from the leading edge corner shear layer and the formed separation bubble are documented in space and time along the mid-plane of symmetry of the body. Three different flows corresponding to different Reynolds numbers are studied. The unsteadiness of the flow is presented indicating a pseudo-periodic character. Large-scale, low-frequency oscillations of the shear layer that have been observed in the past using point measurement methods are now confirmed by means of a whole field velocity measurement, technique allowing a holistic view of the flow. In addition, the unsteadiness of the point of reattachment is associated with the flapping of the shear layer and the shedding of vorticity in the wake. Finally, it is demonstrated that the apparent vortex shedding mechanism of such flows is dependent on the interaction of the primary vortex of the separation bubble with a secondary vortex formed by the separation of the reverse flow boundary layer. By performing measurements with such time and space resolution the inadequacy of time averaged or point measurement methods for the treatment of such complex and unsteady flow fields becomes evident. In final case we employ Particle-Image Velocimetry to show the effect of unsteady excitation on two-dimensional separated flow over a sharp edged airfoil. It is proved that such an approach can be used to effectively control and organize the character of the flow, potentially leading to lift increase and drug reduction of bluff bodies / Ph. D.
7

Spectral-element simulations of turbulent wall-bounded flows including transition and separation

Malm, Johan January 2011 (has links)
The spectral-element method (SEM) is used to study wall-bounded turbulent flowsin moderately complex geometries. The first part of the thesis is devoted to simulations of canonical flow cases, such as temporal K-type transitionand turbulent channel flow, to investigate general resolution requirements and computational efficiency of the numerical code nek5000. Large-eddy simulation (LES) is further performed of a plane asymmetric diffuser flow with an opening angle of 8.5 degrees, featuring turbulent flow separation. Good agreement with numerical studies of Herbst (2007) is obtained, and it is concluded that the use of a high-order method is advantageous for flows featuring pressure-induced separation. Moreover, it is shown, both a priori on simpler model problems and a posteriori using the full Navier--Stokes equations, that the numerical instability associated with SEM at high Reynolds numbers is cured either by employing over-integration (dealiasing) or a filter-based stabilisation, thus rendering simulations of moderate to high Reynolds number flows possible. The second part of the thesis is devoted to the first direct numerical simulation (DNS) of a truly three-dimensional, turbulent and separated diffuser flow at Re = 10 000 (based on bulk velocity and inflow-duct height), experimentally investigated by Cherry et al. (2008). The massively parallel capabilities of the spectral-element method are exploited by running the simulations on up to 32 768 processors. Very good agreement with experimental mean flow data is obtained and it is thus shown that well-resolved simulations of complex turbulent flows with high accuracy are possible at realistic Reynolds numberseven in complicated geometries. An explanation for the discovered asymmetry of the mean separated flow is provided and itis demonstrated that a large-scale quasi-periodic motion is present in the diffuser. In addition, a new diagnostic measure, based on the maximum vorticity stretching component in every spatial point, is designed and tested in a number of turbulent and transitional flows. Finally, Koopman mode decomposition is performed of a minimal channel flow and compared to classical proper orthogonal decomposition (POD). / QC 20111206
8

Low-Frequency Flow Oscillations on Stalled Wings Exhibiting Cellular Separation Topology

Disotell, Kevin James January 2015 (has links)
No description available.

Page generated in 0.1224 seconds