• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Freestream Turbulence on Separation at Low Reynolds Numbers in a Compressor Cascade

Perry, Michael 02 January 2008 (has links)
A parametric study was performed to observe and quantify the effect of varying turbulence intensities on separation and performance in a compressor cascade at low Reynolds numbers. Tests were performed at 25° and 37.5° stagger angle, negative and positive angles of incidence up until the point of full stall, Reynolds numbers from 6 x 104 to 12.5 x 104, and turbulence intensities from approximately 0.7% – 8%. Additionally, oil flow techniques were combined with static tap data to visualize the boundary layer characteristics at various test conditions. The overall performance of the cascade was presented and evaluated through mass-averaged total pressure loss coefficients. The results of the study showed that the best efficiency (lowest pressure loss coefficient) was determined by separation characteristics for any angle of attack. While adding turbulence generally delayed separation, in some cases, adding turbulence to a separated airfoil resulted in decreased performance. Very similar separation characteristics were observed for the full range of Reynolds numbers and stagger, with the higher stagger setting giving slightly better performance. It was shown that a large percentage of total pressure losses can be recovered by applying the appropriate turbulence intensity at any angle of attack, which is relevant to possibilities for active control of such flows. / Master of Science
2

Near Wall Behavior of Vortical Flow around the Tip of an Axial Pump Rotor Blade

Tian, Qing 08 January 2007 (has links)
This dissertation presents the results from an experimental study of three-dimensional turbulent tip gap flow in a linear cascade wind tunnel with 3.3% chord tip clearance with and without moving endwall simulation. Experimental measurements have been completed in Virginia Tech low speed linear cascade wind tunnel. A 24" access laser-Doppler velocimeter (LDV) system was developed to make simultaneous three-velocity-component measurements. The overall size of the probe is 24"à 37"à 24"and measurement spatial resolution is about 100 μm. With 24" optical access distance, the LDV probe allows measurements to be taken from the side of the linear cascade tunnel instead of through the bottom of the tunnel floor. The probe has been tested in a zero-pressure gradient two-dimensional turbulent boundary layer. Experimental measurements (oil flow visualization, pressure measurement, and LDV measurement) for the stationary wall captured the major flow structures of the tip leakage flow in the linear compressor cascade, such as tip leakage vortex, tip leakage vortex separation and tip separation vortex. Large velocity gradients in the tip leakage vortex separation, tip leakage vortex, and tip separation vortex regions generate large production of the Reynolds stresses and turbulent kinetic energy. One of the most interesting features of the tip leakage flow is the bimodal velocity probability histograms of the v component due to the unsteady motion of the flow in the interaction region between the tip leakage vortex and tip leakage jet. The tip separation vortex, tip leakage vortex separation, and tip leakage vortex contain most of turbulent kinetic energy and generate the highest dissipation rate. Relative motion of the endwall significantly affects the tip gap flow structures, especially in the near wall region. Compared to the stationary wall case, velocity gradients in the near wall region for the moving wall case are much smaller and lower velocity gradients in the near wall region cause the low production of Reynolds stresses and turbulent kinetic energy. Similar to the stationary wall case, high Reynolds stresses and turbulent kinetic energy values are mainly located in the vicinity of the tip leakage vortex and tip separation vortex region. The bimodal velocity probability histograms of the v component are also found at the same locations. The tip separation vortex with most of the turbulent kinetic energy generates the highest dissipation rate. The dissipation rate in the tip leakage vortex region is reduced with the decrease of turbulent kinetic energy under the moving wall effect. / Ph. D.
3

Some Features of Tip Gap Flow Fields of a Linear Compressor Cascade

Tian, Qing 16 January 2004 (has links)
This thesis presents some results from an experimental study of three-dimensional turbulent tip gap flows in the linear cascade wind tunnel, for two different tip gap clearances (t/c=1.65% and 3.3%). The experiments focus on near-wall flow field measurements for the stationary wall and moving wall, and static pressure measurement on the low end-wall for the stationary wall case. The representative flows were pressure driven, three-dimensional turbulent boundary layers in the linear cascade tunnel for the stationary wall case, and the combination of the pressure driven and shear driven flow for the moving wall case. Several experimental techniques are used in the studies: a three-orthogonal-velocity-component fiber-optic laser Doppler anemometer (3D-LDA) system, surface oil flow visualization, and a scanivalve system for static pressure measurement through pressure ports on the end-wall. From the details of the oil flow visualization pattern on the end-wall, some features of the passage flow, cross flow, and the tip leakage vortex in this cascade flow were captured. Oil flow visualization on the blade surface reveals the reattachment of the tip leakage vortex on the blade surface. The static pressure results on the lower end-wall and mid-span of the blade show huge pressure drop on the lower end-wall from the pressure side to the suction side of the blade and from mid-span to the lower end wall. The end-wall skin friction velocity is calculated from near-wall LDA data and pressure gradient data using the near-wall momentum equation. The statistics of Reynolds stresses and triple products in two-dimensional turbulent boundary layer and three-dimensional turbulent boundary layer was examined using a velocity fluctuation octant analysis in three different coordinates (the wall collateral coordinates, the mid tip gap coordinates, and the local mean flow angle coordinates). The velocity fluctuation octant analysis for the two-dimensional turbulent boundary layer reveals that ejections of the low speed streaks outward from the wall and the sweeps of high speed streaks inward toward the wall are the dominant coherent motions. The octant analysis for the three-dimensional turbulent boundary layer in the tip gap shows that the dominant octant events are partially different from those in the two-dimensional turbulent boundary layer, but ejection and sweep motions are still the dominant coherent motions. For the three-dimensional turbulent boundary layer in the moving wall flow, the near-wall shear flow reinforces the sweep motion to the moving wall and weakens the out-ward ejection motion in the shear flow dominant region. Between the passage flow and the shear flow, is the interaction region of the high speed streaks and the low speed streaks. This is the first time that the coherent structure of the three-dimensional turbulent boundary in the linear cascade tip gap has been studied. / Master of Science
4

An Experimental Study of Bio-Inspired Force Generation by Unsteady Flow Features

Fassmann, Wesley N. 01 May 2014 (has links) (PDF)
As the understanding of the workings of the biological world expands, biomimetic designs increasingly move into the focus of engineering research studies. For this thesis, two studiesinvolving leading edge vortex generation for lift production as observed in nature were explored intheir respective flow regimes. The first study focused on the steady state analysis of streamwise vortices generated byleading edge tubercles of an adult humpback whale flipper. A realistic scaled model of a humpbackflipper was fabricated based on the 3D reconstruction from a sequence of 18 images taken whilecircumscribing an excised flipper of a beached humpback whale. Two complementary modelswith smooth leading edges were transformed from this original digitized model and fabricatedfor testing to further understand the effect of the leading edge tubercles. Experimentally-obtainedforce and qualitative flow measurements were used to study the influence of the leading edgetubercles. The presence of leading edge tubercles are shown to decrease maximum lift coefficient(Cl ), but increase Cl production in the post-stall region. By evaluating a measure of hydrodynamicefficiency, humpback whale flipper geometry is shown to be more efficient in the pre-stall regionand less efficient in the post-stall region as compared to a comparable model with a smooth leadingedge. With respect to a humpback whale, if the decrease in efficiency during post-stall angles ofattack was only required during short periods of time (turning), then this decrease in efficiencymay not have a significant impact on the lift production and energy needs. For the pursuit ofbiomimetic designs, this decrease in efficiency could have potential significance and should beinvestigated further. Qualitative flow measurements further demonstrate that these force results aredue to a delay of separation resulting from the presence of tubercles.The second study investigated explored the effects of flapping frequency on the passive flowcontrol of a flapping wing with a sinusoidal leading edge profile. At a flapping frequency of f =0.05 Hz, an alternating streamwise vortical formation was observed for the sinusoidal leading edge,while a single pair of vortices were present for the straight leading edge. A sinusoidal leading edgecan be used to minimize spanwise flow by the generation of the observed alternating streamwisevortices. An increase in flapping frequency results in these streamwise vortices becoming stretchedin the path of the wing. The streamwise vortices are shown to minimize spanwise flow even afterbeing stretched. Once instabilities are formed at f ≥ 0:1 Hz due to velocity shearing generatedby the increase in cross-radial velocity, the alternating streamwise vortices begin to break downresulting in a increase of spanwise flow.

Page generated in 0.1027 seconds